Applications requiring detection of small visual contrast require high sensitivity. Event cameras can provide higher dynamic range (DR) and reduce data rate and latency, but most existing event cameras have limited sensitivity. This paper presents the results of a 180-nm Towerjazz CIS process vision sensor called SDAVIS192. It outputs temporal contrast dynamic vision sensor (DVS) events and conventional active pixel sensor frames. The SDAVIS192 improves on previous DAVIS sensors with higher sensitivity for temporal contrast. The temporal contrast thresholds can be set down to 1% for negative changes in logarithmic intensity (OFF events) and down to 3.5% for positive changes (ON events). The achievement is possible through the adoption of an in-pixel preamplification stage. This preamplifier reduces the effective intrascene DR of the sensor (70 dB for OFF and 50 dB for ON), but an automated operating region control allows up to at least 110-dB DR for OFF events. A second contribution of this paper is the development of characterization methodology for measuring DVS event detection thresholds by incorporating a measure of signal-to-noise ratio (SNR). At average SNR of 30 dB, the DVS temporal contrast threshold fixed pattern noise is measured to be 0.3%-0.8% temporal contrast. Results comparing monochrome and RGBW color filter array DVS events are presented. The higher sensitivity of SDAVIS192 make this sensor potentially useful for calcium imaging, as shown in a recording from cultured neurons expressing calcium sensitive green fluorescent protein GCaMP6f.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2017.2759783 | DOI Listing |
Sci Rep
December 2024
India Meteorological Department, New Delhi, 110003, India.
Desert locusts, notorious for their ruinous impact on agriculture, threaten over 20% of Earth's landmass, prompting billions in losses and global food scarcity concerns. With billions of these locusts invading agrarian lands, this is no longer a thing of the past. Recent invasions, such as those in India, where losses reached US$ 3 billion in 2019-20 alone, underscore the urgency of action.
View Article and Find Full Text PDFNat Commun
December 2024
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice.
View Article and Find Full Text PDFPublic Health Nurs
December 2024
Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
Objectives: To investigate temporal trends in childhood and adolescent overweight/obesity in Jiangsu Province, China, evaluating the effects of age, period, and birth cohort.
Design: Cross-sectional study.
Sample: Participants were 210,168 students aged 6-17 years from the five waves of the consecutive cross-sectional Jiangsu provincial surveillance project in 2017-2021.
Front Public Health
December 2024
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
Objective: To characterize the public conversations around long COVID, as expressed through X (formerly Twitter) posts from May 2020 to April 2023.
Methods: Using X as the data source, we extracted tweets containing #long-covid, #long_covid, or "long covid," posted from May 2020 to April 2023. We then conducted an unsupervised deep learning analysis using Bidirectional Encoder Representations from Transformers (BERT).
Front Neurol
December 2024
Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.
Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!