Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Siliceous zeolites are ideally suited for emerging applications in gas separations, sensors, and the next generation of low-k dielectric materials, but the use of fluoride in the synthesis significantly hinders their commercialization. Herein, we show that the dry gel conversion (DGC) technique can overcome this problem. Fluoride-free synthesis of two siliceous zeolites-AMH-4 (CHA-type) and AMH-5 (STT-type), has been achieved for the first time using the method. Siliceous *BEA-, MFI-, and *MRE-type zeolites have also been synthesized to obtain insights into the crystallization process. Charge-balancing interactions between the inorganic cation, organic structure-directing agent (OSDA), and Si-O defects are found to be an essential aspect. We quantify this factor in terms of the "OSDA charge/silica ratio" of the as-made zeolites and demonstrate that the DGC technique is broadly applicable and opens up new avenues for fluoride-free siliceous zeolite synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201712684 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!