Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Calcium binding protein calbindin-D28K (CaBP28K) mediates the relationship between vitamin D and calcium, but its mechanism remains unclear during bone formation. The present study reports that maternal CaBP28K levels were positively correlated with paired umbilical cord CaBP28K levels. In addition, CaBP28K levels were positively correlated with the body length, and head and chest circumferences of neonates, but negatively correlated with maternal 25(OH)D3 levels. CaBP28K was also downregulated in MC3T3-E1 osteoblasts when treated with 1,25(OH)2D or VDR overexpression, but was upregulated in the femur of 1α(OH)ase mice. Furthermore, it was found CaBP28K may influence cell differentiation and matrix formation through the regulation of DMP1 and the interaction with MMP13 in osteoblasts. This suggests that CaBP28K could be a candidate for the negative role of 1,25(OH)2D/VDR in regulating bone mass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.26722 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!