AI Article Synopsis

  • Elevated donor plasma levels of plasminogen activator inhibitor-1 (PAI-1) correlate with a higher incidence of primary graft dysfunction (PGD) in lung transplant recipients.
  • While recipient PGD is associated with higher donor PAI-1, RAGE levels showed a numerical increase but lacked statistical significance.
  • Analyzing these biomarkers in donor plasma could potentially help in selecting better donor lungs and assessing the risk of PGD in recipients.

Article Abstract

Primary graft dysfunction (PGD) following lung transplantation is associated with elevated recipient plasma levels of plasminogen activator inhibitor-1 (PAI-1) and the receptor for advanced glycation end products (RAGE). However, the significance of these biomarkers in the donor plasma is uncertain. We hypothesized that elevated donor plasma levels of PAI-1 and RAGE would be associated with recipient PGD. We carried out a prospective unmatched case-control study of double-lung transplant recipients between May 2014 and September 2015. We compared donor plasma levels of PAI-1 and RAGE using rank-sum tests and t tests, in 12 recipients who developed PGD grade 2 or 3 within 72 hours postoperatively with 13 recipients who did not. Recipients who developed PGD had higher donor plasma levels of PAI-1 than recipients who did not (median 2.7 ng/mL vs 1.4; P = .03). Recipients with PGD also had numerically higher donor plasma levels of RAGE than recipients without PGD, although this difference did not achieve statistical significance (median 1061 pg/mL vs 679; P = .12). Systemic inflammatory responses in the donor, as reflected by elevated plasma levels of PAI-1, may contribute to the risk of developing PGD. Rapid biomarker assessment of easily available plasma samples may assist in donor lung selection and risk stratification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924447PMC
http://dx.doi.org/10.1111/ctr.13210DOI Listing

Publication Analysis

Top Keywords

plasma levels
24
donor plasma
20
levels pai-1
16
elevated donor
8
plasminogen activator
8
activator inhibitor-1
8
primary graft
8
graft dysfunction
8
plasma
8
pai-1 rage
8

Similar Publications

Carbonate fluorapatite coatings on phillipsite represent a significant sink of phosphorus in abyssal plains of the western Pacific Ocean.

Proc Natl Acad Sci U S A

February 2025

Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.

As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.

View Article and Find Full Text PDF

Background: Hemodialysis may excessively remove valuable solutes. Untargeted metabolomics data from a prior study suggested that ergothioneine was depleted in the plasma of hemodialysis subjects. Ergothioneine is a dietary-derived solute with antioxidant properties.

View Article and Find Full Text PDF

Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!