The mechanism of transition from chronic pressure overload-induced cardiac hypertrophy to heart failure is still unclear. Angiotensin II (Ang II) may be an important factor that mediates the transition in the end-stage of cardiac hypertrophy. In the present study, Goldblatt two-kidney one-clip (2K1C) rat model was used to simulate Ang II-induced hypertension. The elevated Ang II not only induced the concentric hypertrophy of left ventricle and cardiac fibrosis, but also increased the expression and glycosylation of CD147 in 2K1C rats. The left ventricular structure and function detected by echocardiogram showed a sign of the transition from cardiac hypertrophy to heart failure in 16 weeks of 2K1C rats. Ang II can activate N-acetylglucosamine transferase V (GnT-V), a key enzyme for CD147 glycosylation. Retinoic acid, an agonist of GnT-V, further increased glycosylated CD147, and activated matrix metalloproteinase-2/-9 (MMP-2 and MMP-9) in the hypertrophied left ventricle of 2K1C rat. Meanwhile, collagen cross-linking in the hypertrophied left ventricle significantly reduced in 2K1C rats. On the contrary, tunicamycin, an inhibitor of N-glycan biosynthesis, inhibited glycosylation of CD147 and activity of MMP-2 and MMP-9, and then maintained a stable of collagen cross-linking in the 2K1C rat hearts. The above results suggested that Ang II increased glycosylated CD147 which activated MMP-2 and MMP-9. Collagens were degraded by the activated MMPs and then reduced collagen cross-linking. Finally, the hypertrophied left ventricle was progressively dilated in chronic pressure overload due to losing the limitation of collagen cross-linking. Therefore, the compensated hypertrophy of left ventricle gradually transited to congestive heart failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.26713 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany.
This study investigates the mechanical properties as well as and cyto- and biocompatibility of collagen membranes cross-linked with glutaraldehyde (GA), proanthocyanidins (PC), hexamethylendiisocyanate (HMDI) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EC/NHS). A non-crosslinked membrane was used as reference control (RF). The initial cytotoxic analyses revealed that the PC, EC, and HMDI crosslinked membranes were cytocompatible, while the GA crosslinked membrane was cytotoxic and thus selected as positive control in the further study.
View Article and Find Full Text PDFMethods
January 2025
Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil. Electronic address:
The cornea is the primary refracting surface of the eye, requiring precise curvature to ensure optimal vision. Any distortion in its shape may result in significant visual impairment. Corneal ectasias, such as keratoconus (KC), is characterized by gradual thinning and protrusion of the thinned area, due to biomechanical weakening of the tissue, leading to astigmatism and vision loss.
View Article and Find Full Text PDFACS Nano
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.
View Article and Find Full Text PDFACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver conditions, ranging from hepatic steatosis to steatohepatitis, fibrosis, and severe outcomes such as cirrhosis or cancer. The progression from hepatic steatosis to fibrosis involves significant extracellular matrix (ECM) remodeling, characterized by increased collagen deposition and cross-linking of ECM proteins, causing increased tissue stiffness and altered MMP expression patterns. Dysregulated MMP expression and extracellular acidosis are key contributors to NAFLD progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!