Despite important advances in regenerative medicine and tissue engineering, still, wound healing remains a challenging clinical problem. Cell therapy has opened a new viewpoint in medicine as well as wound management, although it has some limitations. On the other hand, there are some hopes for the eliminated of cellular therapies limitations by "exosomes." The term "exosome" has been frequently used to describe all vesicles released by different cells into the extracellular environment and can influence tissue responses to injury, infection, immune system, and healing. Exosomes contain cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs that have been found in some body fluids and can be transferred between cells to mediating cell-to-cell communication and interactions. Recently, several studies have demonstrated that exosomes are one of the key secretory products of various cell type especially mesenchymal stem cells (MSCs) to regulate many biological processes such wound healing. Hence, understanding these exosomes effects may help to improve wound management and highlight a new therapeutic model for cell-free therapies with decreased side effects for the wound repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.26706 | DOI Listing |
J Appl Biomater Funct Mater
January 2025
Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil.
The use of adjunct chemical substances in the early postoperative period of periodontal surgical procedures is recommended due to the potential risk of trauma in the operated area. Chlorhexidine digluconate mouthwash is widely used but can cause adverse effects. Phthalocyanine derivatives are being studied as an alternative, demonstrating good antimicrobial activity, especially in the self-activated form, which does not require additional light or chemicals.
View Article and Find Full Text PDFRecent Adv Drug Deliv Formul
January 2025
Central Laboratory, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, China.
Exosomes are nanoscale extracellular vesicles with various biological activities that can accelerate wound healing by regulating inflammatory responses, promoting cell proliferation and angiogenesis, and other mechanisms. Among them, plant and animal exosomes have demonstrated unique advantages due to their biological characteristics. Plant exosomes have gradually become a research hotspot due to their wide source, high biosafety, and low production cost, demonstrating significant pro-healing potential.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, 310 Cedar Street, New Haven, Connecticut 06510, United States.
Encapsulating fibroblasts in alginate hydrogels is a promising strategy to promote wound healing. However, improving the cell function within the alginate matrix remains a challenge. In this study, we engineer an injectable hydrogel through mixing alginate function with collagen and fibronectin, creating a better microenvironment for enhancing fibroblast function and cytokine secretion.
View Article and Find Full Text PDFCureus
December 2024
Obstetrics and Gynaecology, Tata Main Hospital, Jamshedpur, IND.
Leiomyomas are benign tumors of the female genital tract, usually arising from the uterus. Vaginal leiomyomas are extremely rare. We describe here a case of vaginal leiomyoma in a 28-year-old unmarried woman who presented with excessive vaginal bleeding and acute retention of urine.
View Article and Find Full Text PDFJID Innov
March 2025
Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
With the goal of studying skin wound healing and testing new drug treatments to enhance wound healing in rodent models, there is a clear need for improved splinting techniques to increase surgical efficiency and support routine wound monitoring. Splinted wound healing models humanize wound healing in rodents to prevent contraction and instead heal through granulation tissue deposition, increasing the relevance to human wound healing. Current technologies require suturing and heavy wrapping, leading to splint failure and cumbersome monitoring of the wound.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!