Objective: To test the hypothesis that mutations in the parathyroid hormone 1 receptor ( PTH1R) include effects in both primary and permanent teeth.

Materials And Methods: DNA was extracted from saliva samples of 29 patients (8 familial and 21 sporadic) who presented with clinical evidence of infraoccluded teeth, and their unaffected relatives (N = 22). Sequencing followed by mutational analysis of the coding regions of PTH1R gene was completed for all individuals (N = 29).

Results: Eight of 29 cases revealed a heterozygous pathogenic variant in the PTH1R gene; five of eight variants represented distinct mutations based on comparison with the dbSNP, HGMD, and ESP databases. One mutation (c.1765 T>C p.Trp89Arg) was found to segregate within a family (n = 3). In silico analyses for all variants revealed a putative pathogenic effect. A genotype-phenotype correlation was reported as defined by a functional mutation in PTH1R and corresponding effects on one or more posterior teeth only; unilateral or bilateral involvement, infraoccluded primary teeth.

Conclusions: Novel mutations were reported in the PTH1R gene that included PFE-affected primary molars, thus providing the basis for using a genetic diagnostic tool for early diagnosis leading to proper management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288321PMC
http://dx.doi.org/10.2319/062717-430.1DOI Listing

Publication Analysis

Top Keywords

pth1r gene
12
pth1r
5
primary
4
primary failure
4
failure eruption
4
eruption clinical
4
clinical genetic
4
genetic findings
4
findings mixed
4
mixed dentition
4

Similar Publications

The blood-brain barrier is often altered in glioblastoma (GBM) creating a blood-brain-tumor barrier (BBTB) composed of pericytes. The BBTB affects chemotherapy efficacy. However, the expression signatures of BBTB-associated pericytes remain unclear.

View Article and Find Full Text PDF

Primary failure of tooth eruption (PFE) is an autosomal dominant disease with penetrance defect. While the clinical phenotype is relatively well-defined since the 70 s of the last centuries, much more need to be clarified about the genetic causes of this condition. In our previous paper we established clinical criteria to better identify PFE patients carrying PTH1R gene variants.

View Article and Find Full Text PDF
Article Synopsis
  • Two patients of East African descent have been identified with a novel homozygous variant in the parathyroid hormone receptor type 1 (PTH1R), which is linked to Eiken syndrome features such as brachydactyly and skeletal abnormalities.
  • Both patients showed parathyroid hormone resistance, resulting in low calcium and high phosphate levels, which initially pointed to pseudohypoparathyroidism, yet genetic testing confirmed a specific PTH1R mutation.
  • Functional analysis revealed that both PTH1R variants caused increased basal cAMP signaling and reduced responsiveness to PTH and PTH-related peptide, indicating a disruption in PTH1R signaling pathways associated with their clinical symptoms.
View Article and Find Full Text PDF

Mechanoinduction of PTHrP/cAMP-signaling governs proteoglycan production in mesenchymal stromal cell-derived neocartilage.

J Cell Physiol

December 2024

Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.

Abnormal mechanical loading is one of the major risk factors for articular cartilage degeneration. Engineered mesenchymal stromal cell (MSC)-derived cartilage holds great promise for cell-based cartilage repair. However, physiological loading protocols were shown to reduce matrix synthesis of MSC-derived neocartilage in vitro and the regulators of this undesired mechanoresponse remain poorly understood.

View Article and Find Full Text PDF

High-Throughput Preosteoblastic Spheroids Elevate Fibroblast Growth Factor 23 via Parathyroid Hormone Signaling Pathway.

Tissue Eng Part C Methods

September 2024

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.

Fibroblast growth factor 23 (FGF23) plays a crucial role in managing renal phosphate and the synthesis of 1,25(OH)2-vitamin D3, which is essential for bone homeostasis. Developing robust systems to study FGF23-regulating mechanisms is crucial for advancing our knowledge and identifying potential therapeutic targets. The traditional 2D culture system results in relatively low expression of FGF23, complicating further exploration of its regulatory mechanisms and potential therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!