We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-insulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasiparticle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.120.020401DOI Listing

Publication Analysis

Top Keywords

propagation correlations
8
light-cone diffusive
4
propagation
4
diffusive propagation
4
correlations
4
correlations many-body
4
many-body dissipative
4
dissipative system
4
system analyze
4
analyze propagation
4

Similar Publications

The use of a composite welded joint consisting of titanium and austenitic stainless steel metals is evidently a favourable selection for industrial applications employing the resistance spot welding (RSW) operation. Nevertheless, achieving a high-quality welded joint proved challenging owing to the properties of the diverse range of materials' used. To improve the quality of dissimilar welded joints, the welding parameters should be selected precisely.

View Article and Find Full Text PDF

We introduce the reflection intensity correlation scan (RICO-scan), a nonlinear (NL) optical technique designed to characterize opaque and scattering media, where traditional transmittance methods fail. By analyzing variations in the intensity correlation functions of speckle patterns generated from backscattered light, the RICO-scan was applied to an unpolished silicon surface and silicon powders, providing information on the intensity dependence of the complex refractive index. Numerical simulations based on Fresnel equations and speckle propagation corroborated the experimental results, demonstrating RICO-scan's robustness and versatility.

View Article and Find Full Text PDF

We experimentally study the evolution of the magnetic moment m and exchange interaction J as a function of hydrostatic pressure in the zero-field helimagnetic phase of the strongly correlated electron system MnSi. The suppression of magnetic order at ≈1.5  GPa is shown to arise from the J collapse and not from a quantum fluctuations induced reduction of m.

View Article and Find Full Text PDF

Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays.

Phys Rev Lett

December 2024

Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France.

Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.

View Article and Find Full Text PDF

Statement Of The Problem: Squamous cell carcinomas (SCCs) and premalignant disorders such as leukoplakia are common oral cavity lesions. Although these lesions are epithelial in nature, they are also associated with juxta-epithelial chronic inflammation. Mast cells play a significant role in inflammation initiation and propagation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!