Organelles often feature parameters pertinent to functions and yet responsive to biochemical stress. The electropotential across the mitochondrial membrane (ΔΨm) is a crucial mediator of cell fates. Herein we report a bioorthogonal reaction enabled fluorescence-on probing of ΔΨm alterations featuring anionic fluorescein-triphenylphosphonium diad (F-TPP), which is released via intramitochondria Staudinger reaction triggered self-immolation of o-azidomethylbenzoylated F-TPP. Compared to classical cationic mitochondria-specific dyes, F-TPP is hydrophilic and negatively charged. Effectively discerning ΔΨm changes upon diverse stress inducers, the organelle-directed bioorthogonal imaging strategy offers unprecedented choices to probe mitochondrial biology with functional molecules that are otherwise inaccessible via physiological organelle-probe affinity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b05465DOI Listing

Publication Analysis

Top Keywords

staudinger reaction
8
organelle-directed staudinger
4
reaction enabling
4
enabling fluorescence-on
4
fluorescence-on resolution
4
resolution mitochondrial
4
mitochondrial electropotentials
4
electropotentials self-immolative
4
self-immolative charge
4
charge reversal
4

Similar Publications

Iminophosphoranes with the general formula (RP═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported.

View Article and Find Full Text PDF

A low-molecular-weight compound whose structure strikes a fine balance between hydrophobicity and hydrophilicity may form coacervates via liquid-liquid phase separation in an aqueous solution. These coacervates may encapsulate and convoy proteins across the plasma membrane into the cell. However, releasing the cargo from the vehicle to the cytosol is challenging.

View Article and Find Full Text PDF

Water-Compatible Staudinger-Diels-Alder Ligation.

J Org Chem

January 2025

Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.

The development of bioorthogonal reactions is expected to propel further advances in chemical biology. In this study, we demonstrate Staudinger-Diels-Alder (SDA) ligation as a candidate for a new bioorthogonal reaction. This reaction ligates two molecules via strong C-C bonds at room temperature.

View Article and Find Full Text PDF

Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.

View Article and Find Full Text PDF

Staudinger Cleavages of Amides on Naphthalene for the Ipsilateral Effect of 1,8-Substituents.

Org Lett

December 2024

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

8-(Azidomethyl)-1-naphthoic acid was elaborately prepared, and its coupling with amines provided the corresponding 8-(azidomethyl)-1-naphthamides. The Staudinger reactions of 8-(azidomethyl)-1-naphthamides with phosphine produced iminophosphoranes, and easy intramolecular cyclization of the iminophosphoranes afforded 2,3-dihydro-1-benzo[]isoquinolin-1-one leaving amines with almost quantitative conversion rates for the ipsilateral effect of 1,8-substituents on naphthalene. The protocol exhibits some advantages, including a readily available protecting group, cleavages of amides in almost quantitative conversion rates, an aqueous medium, reactions at room temperature, a broad substrate scope, wide functional group tolerance, and suitable scale-up reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!