Synthesis of Prebiotic Caramels Catalyzed by Ion-Exchange Resin Particles: Kinetic Model for the Formation of Di-d-fructose Dianhydrides.

J Agric Food Chem

Laboratoire de Chimie Moléculaire et Génie des Procédés Chimiques et Energétiques (EA7341), Equipe Génie des procédés, Conservatoire national des arts et métiers, 2 rue Conté, 75003 Paris, France.

Published: February 2018

Caramel enriched in di-d-fructose dianhydrides (DFAs, a family of prebiotic cyclic fructodisaccharides) is a functional food with beneficial properties for health. The aim of this work was to study the conversion of fructose into DFAs catalyzed by acid ion-exchange resin, in order to establish a simplified mechanism of the caramelization reaction and a kinetic model for DFA formation. Batch reactor experiments were carried out in a 250 mL spherical glass flask and afforded up to 50% DFA yields. The mechanism proposed entails order 2 reactions that describe fructose conversion on DFAs or formation of byproducts such as HMF or melanoidines. A third order 1 reaction defines DFA transformation into fructosyl-DFAs or fructo-oligosaccharides. The influence of fructose concentration, resin loading and temperature was studied to calculate the kinetic parameters necessary to scale up the process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.7b04868DOI Listing

Publication Analysis

Top Keywords

ion-exchange resin
8
kinetic model
8
di-d-fructose dianhydrides
8
synthesis prebiotic
4
prebiotic caramels
4
caramels catalyzed
4
catalyzed ion-exchange
4
resin particles
4
particles kinetic
4
model formation
4

Similar Publications

Radiocarbon analysis of nuclear waste produced in nuclear facilities lacks fast, in situ detection methods. Moreover, the amount of radiocarbon desorbing from graphitic waste is not well known. In this study, we demonstrate the use of mid-infrared cavity ring-down spectroscopy combined with an automatic sample processing unit as a method to examine radiocarbon concentration in three types of nuclear waste: spent ion-exchange resin, graphite, and graphite outgassing in sealed storage crates.

View Article and Find Full Text PDF

Drinking and wastewater are to be treated for safe human consumption and for keeping surface waters clean. There are multiple water purification procedures, but the use of ion-exchange resins significantly enhances water purification efficiency. This review was targeted on highlighting the concept and classification of polymeric ion-exchange resins as well as pointing out their real-world applications.

View Article and Find Full Text PDF

The study of biomolecules and their interactions in their natural environment requires increasingly sophisticated technological and methodological developments. The complexity of these developments is due, among other things, to the nature of these molecules and the small quantities available depending on their origin. In this context, this study focuses on the conditions for improving the detection of glycosaminoglycans on a miniaturized scale by mass spectrometry.

View Article and Find Full Text PDF

Effect of Acidulated Phosphate Fluoride Gel on Zirconia Intaglio Surface: An Study.

J Int Soc Prev Community Dent

October 2024

Department of Basic Dental Science, College of Dentistry, University of Mosul, Mosul, Iraq.

Aim: To evaluate the micro-shear bond strength (µ-SBS) of resin-modified glass ionomer cement and to assess the chemical and topographical changes in the zirconia fitting surface induced by acidulated phosphate fluoride (APF) gel using scanning electron microscope (SEM) analysis and Fourier transform infrared (FTIR) spectroscopy.

Materials And Methods: Thirty-two samples were prepared from two zirconia materials, UPCERA HT White and BruxZir Solid Zirconia, milled by a computer-aided design/computer-aided manufacturing system. From each zirconia sample, six plates were prepared for FTIR and SEM testing.

View Article and Find Full Text PDF

In this study, humic acid was used as a model pollutant to investigate the removal effect of a macroporous weakly alkaline anion exchange resin D301 on natural organic matter (NOM) in water. 3D fluorescence spectroscopy, UV - visible spectrophotometry and Fourier transform infrared (FTIR) spectroscopy were employed to analyze changes in the physical and chemical properties of humic acid solution and natural water samples before and after resin adsorption. The results showed that using humic acid as a model pollutant to simulate NOM in water is feasible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!