Amorphous silica (SiO2) in the form of nanoparticles (NPs) is widely used as a food additive E551 in many enriched foods and food supplements. The aim of this study was to evaluate the effect of oral administration of SiO2 NPs on assimilation and metabolism of vitamins B1, B2 and B6 in laboratory rats. Amorphous SiO2 «Orisil-300 ®» was used with the size of the primary NPs 20-60 nm according to the electronic, atomic force microscopy and dynamic light scattering. The experiment was conducted on 8 groups of growing male Wistar rats (with initial body weight 70-80g) number, respectively, 7, 7, 10, 10, 12, 12, 14 and 16 animals. Animals of the 1st, 3rd, 4th and 5th groups received through­out the experiment balanced semi-synthetic diet. Animals of the 2nd group received a diet depleted of vitamins B1, B2 and B6 until day 21; animals of the 6th, 7th and 8th groups -the same diet from the 1st to the 21th day, and then, before the closure of the experiment, the diet provided with the indicated B vitamins at 100% of normal level. From day 22 of experiment and until the end at day 29 the animals of the 3rd and 6th groups received deionized water (placebo) through intragastric gavage; rat of the 4th and 7th groups -aqueous suspension of SiO2 dose of 1 mg/kg body weight /day, and the 5th and 8th group -100 mg/kg/day. Urinary excretion of thiamine, riboflavin, 4-pyridoxilic acid and liver and brain content of vitamins B1 and B2 (after acid and enzyme hydrolysis) were deter­mined by fluorimetric methods. It was found that rats in group 2 lagged in weight gain at day 21 significantly compared to group 1, and developed a marked deficiency of vitamins B1, B2 and B6 according to studied safety parameters. In groups from 6 to 8 at day 29 par­tial recovery was achieved in vitamin status. Administration of SiO2 to animal of groups 4 and 5, with normal consumption of B vitamins, had no significant effect on any param­eters of vitamin status in comparison to group 3. However, intragastric administration of SiO2 led in animals of groups 7 and 8 to an increase in the urinary excretion of vitamins B1 and B2 and lowering of their content in liver as compared to group 6. Administration of SiO2 had no effect on indices of vitamin B6 sufficiency. Possible reasons are discussed for the adverse lowering impact of SiO2 NPs on the availability of vitamins B1 and B2 and their increased clearance from the body.

Download full-text PDF

Source

Publication Analysis

Top Keywords

administration sio2
16
vitamins
9
amorphous silica
8
sio2
8
sio2 nps
8
groups
8
body weight
8
groups received
8
day animals
8
urinary excretion
8

Similar Publications

Effects of orally exposed SiO nanoparticles on lipid profiles in gut-liver axis of mice.

Ecotoxicol Environ Saf

December 2024

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China. Electronic address:

Recently we proposed the possibility of orally exposed nanoparticles (NPs) to alter metabolite homeostasis by changing metabolism pathways, in addition to intestinal damages, but relatively few studies investigated the changes of metabolite profiles in multi-organs. This study investigated the influences of orally exposed SiO NPs on lipid profiles in gut-liver axis. To this end, we treated mice with 16, 160 or 1600 mg/kg bodyweight SiO NPs via intragastric route.

View Article and Find Full Text PDF

Encapsulation of fluorescent carbon dots into mesoporous SiO colloidal spheres by surface functionalization-assisted cooperative assembly for high-contrast latent fingerprint development.

Chemosphere

February 2025

State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK. Electronic address:

Exploiting solid powder fluorescence holds significant potential in diverse domains including medicine and forensics. Conventional fingerprint detection methods often fall short due to low contrast, sensitivity, and high toxicity. To addressing these challenges, we present a novel method for latent fingerprint detection using fluorescent carbon dots (CDs) encapsulated into conventional or mesoporous SiO colloidal spheres (CD@SiO or CDs@m-SiO) through a surface functionalization-assisted cooperative assembly process.

View Article and Find Full Text PDF

Advanced oral breviscapine sustained-release tablets for improved ischemic stroke treatment.

Biomaterials

May 2025

School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China. Electronic address:

This study aimed to address the challenges associated with the low oral bioavailability and the necessity for frequent dosing of breviscapine (BRE), a mainstream drug in the treatment of cardiovascular and cerebrovascular diseases. The poor solubility and permeability of BRE in the gastrointestinal tract were identified as significant barriers to effective drug absorption, thereby impacting therapeutic efficacy and patient compliance. To enhance the gastrointestinal absorption of BRE, particles loaded with BRE were engineered utilizing Cremophor EL (CrEL), an absorption enhancer, in conjunction with mesoporous silica, a biocompatible drug delivery vector, formulating mesoporous silica particles loaded with BRE and CrEL (BRE-CrEL@SiO).

View Article and Find Full Text PDF

Objective: To predict the targets of Bufei Huoxue capsule (, BFHX) using network pharmacology analysis and to explore its effects and functional targets in a silicotic rat model.

Methods: The drug and disease targets were correlated through network pharmacology analysis to explore the targets and signaling pathways of BFHX affecting silicosis. NR8383 cells were cultured to verify the core genes and pathways.

View Article and Find Full Text PDF

Introduction: Hepatocellular carcinoma (HCC) is the main hepatic primary malignancy. Patients with advanced HCC receiving the recommended therapies have a poor outcome. In different settings, nanotechnology has gained attraction as a potential alternative strategy for improving therapeutic effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!