Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ungulate herbivores play a prominent role in maintaining the tree-grass balance in African savannas. Their top-down role through selective feeding on either trees or grasses is well studied, but their bottom-up role through deposition of nutrients in dung and urine has been overlooked. Here, we propose a novel concept of savanna ecosystem functioning in which the balance between trees and grasses is maintained through stoichiometric differences in dung of herbivores that feed on them. We describe a framework in which N-fixing trees and grasses, as well as ungulate browsing and grazing herbivores, occupy opposite positions in an interconnected cycle of processes. The framework makes the testable assumption that the differences in dung N:P ratio among browsers and grazers are large enough to influence competitive interactions between N-fixing trees and grasses. Other key elements of our concept are supported with field data from a Kenyan savanna.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773295 | PMC |
http://dx.doi.org/10.1002/ece3.3666 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!