Anthropogenic warming is projected to trigger positive feedbacks to climate by enhancing carbon losses from the soil1. While such losses are, in part, owing to increased decomposition of organic matter by invertebrate detritivores, it is unknown how detritivore feeding activity will change with warming2, especially under drought conditions. Here, using four year manipulation experiments in two North American boreal forests, we investigate how temperature (ambient, +1.7 °C, +3.4 °C) and rainfall (ambient, -40% summer precipitation) perturbations influence detritivore feeding activity. In contrast to general expectations1,3, warming had negligible net effects on detritivore feeding activity at ambient precipitation. However, when combined with precipitation reductions, warming decreased feeding activity by ~14%. As across all plots and dates, detritivore feeding activity was positively associated to bulk soil microbial respiration, our results suggest slower rates of decomposition of soil organic matter, and thus reduced positive feedbacks to climate under anthropogenic climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777625PMC
http://dx.doi.org/10.1038/s41558-017-0032-6DOI Listing

Publication Analysis

Top Keywords

feeding activity
24
detritivore feeding
16
positive feedbacks
8
feedbacks climate
8
organic matter
8
activity
6
feeding
5
reduced feeding
4
activity soil
4
soil detritivores
4

Similar Publications

Background: The rapid rise of non-communicable diseases, particularly type 2 diabetes mellitus (T2DM), poses a significant global public health challenge, with South Asia experiencing an increasingly severe burden. This study aimed to analyse historical trends of T2DM across South Asia from 1990 to 2021 and forecast incidence through 2031.

Research Design And Methods: We carried out analysis based on the data from the 2021 Global burden of disease study.

View Article and Find Full Text PDF

The circadian cycle is a fundamental biological rhythm that governs many physiological functions across nearly all living organisms. In the gastrointestinal tract, activities such as gut motility, hormone synthesis, and communication between the gut, central nervous system and microbiome all fluctuate in alignment with the circadian cycle. The enteric nervous system (ENS) is critical for co-ordinating many of these activities, however, how its activity is governed by the circadian cycle remains unknown.

View Article and Find Full Text PDF

Small Intestinal Slow Wave Dysrhythmia and Blunted Postprandial Responses in Diabetic Rats.

Neurogastroenterol Motil

January 2025

Division of Gastroenterology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.

Background: Gastric dysmotility and gastric slow wave dysrhythmias have been well documented in patients with diabetes. However, little is known on the effect of hyperglycemia on small intestine motility, such as intestinal slow waves, due to limited options in measuring its activity. Moreover, food intake and digestion process have been reported to alter the small intestine motility in normal rats, but their roles in that of diabetic rats remains unknown.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.

View Article and Find Full Text PDF

A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes.

Life Sci

January 2025

Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:

Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!