Cardiac cell-based therapy has emerged as a novel therapeutic option for patients dealing with untreatable refractory angina (RA). However, after more than a decade of controlled studies, no definitive consensus has been reached regarding clinical efficacy. Although positive results in terms of surrogate endpoints have been suggested by early and phase II clinical studies as well as by meta-analyses, the more recent reports lacked the provision of definitive response in terms of hard clinical endpoints. Regrettably, pivotal trials designed to conclusively determine the efficacy of cell-based therapeutics in such a challenging clinical condition are therefore still missing. Considering this, a comprehensive reappraisal of cardiac cell-based therapy role in RA seems warranted and timely, since a number of crucial cell- and patient-related aspects need to be systematically analysed. As an example, the large variability in efficacy endpoint selection appears to be a limiting factor for the advancement of cardiac cell-based therapy in the field. This review will provide an overview of the key elements that may have influenced the results of cell-based trials in the context of RA, focusing in particular on the understanding at which the extent of angina-related endpoints may predict cell-based therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742462 | PMC |
http://dx.doi.org/10.1155/2017/5648690 | DOI Listing |
Acta Pharm Sin B
December 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX, 77843-3120, USA.
The lymphatic system, which regulates inflammation and fluid homeostasis, is damaged in various diseases including myocardial infarction (MI) and breast-cancer-related lymphedema (BCRL). Mounting evidence suggests that restoring tissue fluid drainage and clearing excess immune cells by regenerating damaged lymphatic vessels can aid in cardiac repair and lymphedema amelioration. Current treatments primarily address symptoms rather than underlying causes due to a lack of regenerative therapies, highlighting the importance of the lymphatic system as a promising novel therapeutic target.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Cardiothoracic Surgery, Democritus University of Thrace University General Hospital, 68100 Alexandroupolis, Greece.
Cardiovascular disease comprises a group of disorders affecting or originating within tissues and organs of the cardiovascular system; most, if not all, will eventually result in cardiomyocyte dysfunction or death, negatively impacting cardiac function. Effective models of cardiac disease are thus important for understanding crucial aspects of disease progression, while recent advancements in stem cell biology have allowed for the use of stem cell populations to derive such models. These include three-dimensional (3D) models such as stem cell-based models of embryos (SCME) as well as organoids, many of which are frequently derived from embryoid bodies (EB).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
College of Pharmacy, Chongqing Medical University, Chongqing, China.
Insulin resistance, a key factor in the development of type 2 diabetes mellitus (T2DM), is defined as a defect in insulin-mediated control of glucose metabolism in tissues such as liver, fat and muscle. Insulin resistance is a driving force behind various metabolic diseases, such as T2DM, hyperlipidemia, hypertension, coronary heart disease and fatty liver. Therefore, improving insulin sensitivity can be considered as an effective strategy for the prevention and treatment of these complex metabolic diseases.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!