Three different palladium(II) complexes with ligands containing nitrogenized aromatic rings were investigated theoretically as model to obtain the computational band gap energies. The results demonstrated promising possibility for designing palladium(II) complexes with photocatalytic properties at visible light irradiation. Deliberated products were synthesized via grafting on the silica-coated FeO magnetic nanoparticles (FeO@SiO). Formation of complexes on the surface of FeO@SiO, as insoluble and reusable photocatalysts, was proved by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric (TGA), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), transmission electron microscope (TEM), and scanning electron microscopy (SEM) analyses. The trend of the band gap energies of prepared structures was calculated via experimental and theoretical methods. The photocatalytic capability of these nanoparticles was investigated in degradation of 2,4-dichlorophenol by means of HPLC analysis. A tentative reaction mechanism for the formation of intermediates was proposed. Graphical abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-1117-5 | DOI Listing |
Dalton Trans
January 2025
Institut de Chimie Moléculaire de Reims - UMR 7312 CNRS-Université de Reims Champagne-Ardenne UFR des Sciences Exactes et Naturelles, BP 1039, 51687 REIMS, Cedex 2, France.
Expression of concern for 'Nanocrystalline starch grafted palladium(II) complex for the Mizoroki-Heck reaction' by Sanny Verma , , 2013, , 14454-14459, https://doi.org/10.1039/C3DT51685G.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:
Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. Electronic address:
Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches.
View Article and Find Full Text PDFCatal Sci Technol
December 2024
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
Even though α-arylation of ketones is attractive for direct C-H functionalization of organic substrates, the method largely relies on phosphine-ligated palladium complexes. Only recently, efforts have focused on developing nitrogen-based ligands as a more sustainable alternative to phosphines, with pyridine-functionalized pyridinium amidate (pyr-PYA) ,'-bidentate ligands displaying good selectivity and activity. Here, we report on a second generation set of catalyst precursors that feature a 5-membered N-heterocycle instead of a pyridine as chelating unit of the PYA ligand to provide less steric congestion for the rate-limiting transmetalation of the enolate.
View Article and Find Full Text PDFDalton Trans
January 2025
Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!