Time-varying connectivity analysis based on sources reconstructed using inverse modeling of electroencephalographic (EEG) data is important to understand the dynamic behaviour of the brain. We simulated cortical data from a visual spatial attention network with a time-varying connectivity structure, and then simulated the propagation to the scalp to obtain EEG data. Distributed EEG source modeling using sLORETA was applied. We compared different dipole (representing a source) selection strategies based on their time series in a region of interest. Next, we estimated multivariate autoregressive (MVAR) parameters using classical Kalman filter and general linear Kalman filter approaches followed by the calculation of partial directed coherence (PDC). MVAR parameters and PDC values for the selected sources were compared with the ground-truth. We found that the best strategy to extract the time series of a region of interest was to select a dipole with time series showing the highest correlation with the average time series in the region of interest. Dipole selection based on power or based on the largest singular value offer comparable alternatives. Among the different Kalman filter approaches, the use of a general linear Kalman filter was preferred to estimate PDC based connectivity except when only a small number of trials are available. In the latter case, the classical Kalman filter can be an alternative.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097773 | PMC |
http://dx.doi.org/10.1007/s10548-018-0621-3 | DOI Listing |
Accurately estimating phase is crucial in continuous-variable quantum key distribution systems, directly impacting the final secret key rate. In previous systems that utilize the local local oscillator, phase estimation is closely tied to the amplitude and signal-to-noise ratio (SNR) of the pilot signal. As SNR decreases, so does the accuracy of phase estimation, leading to increased excess noise and a potential loss of the system's secret key rate.
View Article and Find Full Text PDFComput Stat
September 2024
Department of Statistics, Purdue University, West Lafayette, IN 47907.
State estimation for large-scale non-Gaussian dynamic systems remains an unresolved issue, given nonscalability of the existing particle filter algorithms. To address this issue, this paper extends the Langevinized ensemble Kalman filter (LEnKF) algorithm to non-Gaussian dynamic systems by introducing a latent Gaussian measurement variable to the dynamic system. The extended LEnKF algorithm can converge to the right filtering distribution as the number of stages become large, while inheriting the scalability of the LEnKF algorithm with respect to the sample size and state dimension.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Mechatronics Engineering, North University of China, Taiyuan 030051, China.
To enhance the positioning accuracy of autonomous underwater vehicles (AUVs), a new adaptive filtering algorithm (RHAUKF) is proposed. The most widely used filtering algorithm is the traditional Unscented Kalman Filter or the Adaptive Robust UKF (ARUKF). Excessive noise interference may cause a decrease in filtering accuracy and is highly likely to result in divergence by means of the traditional Unscented Kalman Filter, resulting in an increase in uncertainty factors during submersible mission execution.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Engineering Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Topography estimation is essential for autonomous off-road navigation. Common methods rely on point cloud data from, e.g.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Smart Diagnostic and Online Monitoring, Leipzig University of Applied Sciences, Wächterstraße 13, 04107 Leipzig, Germany.
This paper presents a comparative study of different AI models for indoor positioning systems, emphasizing improvements in localization accuracy and processing time. This study examines Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNNs), and the Kalman filter using a real Received Signal Strength Indicator (RSSI) and 9-axis ICM-20948 sensor. An in-depth analysis is provided in this paper for data cleaning and feature selection to reduce errors for all the models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!