A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Serogroup-level resolution of the "Super-7" Shiga toxin-producing Escherichia coli using nanopore single-molecule DNA sequencing. | LitMetric

Serogroup-level resolution of the "Super-7" Shiga toxin-producing Escherichia coli using nanopore single-molecule DNA sequencing.

Anal Bioanal Chem

Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.

Published: September 2018

DNA sequencing and other DNA-based methods are now broadly used for detection and identification of bacterial foodborne pathogens. For the identification of foodborne bacterial pathogens, taxonomic assignments must be made to the species or even subspecies level. Long-read DNA sequencing provides finer taxonomic resolution than short-read sequencing. Here, we demonstrate the potential of long-read shotgun sequencing obtained from the Oxford Nanopore Technologies (ONT) MinION single-molecule sequencer, in combination with the Basic Local Alignment Search Tool (BLAST) with custom sequence databases, for foodborne pathogen identification. A library of mixed DNA from strains of the "Super-7" Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157[:H7]) was sequenced using the ONT MinION resulting in 44,245 long-read sequences. The ONT MinION sequences were compared to a custom database composed of the E. coli O-antigen gene clusters. A vast majority of the sequence reads were from outside of the O-antigen cluster and did not align to any sequences in the O-antigen database. However, 58 sequences (0.13% of the total sequence reads) did align to a specific Super-7 O-antigen gene cluster, with each O-antigen cluster aligning to at least four sequence reads. BLAST analysis against a custom whole-genome database revealed that 5096 (11.5%) of the MinION sequence reads aligned to one and only one sequence in the database, of which 99.6% aligned to a sequence from a "Super-7" STEC. These results demonstrate the ability of the method to resolve STEC to the serogroup level and the potential general utility of the MinION for the detection and typing of foodborne pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-018-0877-1DOI Listing

Publication Analysis

Top Keywords

sequence reads
16
dna sequencing
12
ont minion
12
"super-7" shiga
8
shiga toxin-producing
8
toxin-producing escherichia
8
escherichia coli
8
foodborne pathogens
8
o-antigen gene
8
o-antigen cluster
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!