Corneal regeneration: A review of stromal replacements.

Acta Biomater

University of Antwerp, Ophthalmology, Visual Optics and Visual Rehabilitation, Universiteitsplein 1, Building T4, 2610 Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, U113 Wilrijkstraat 10, 2650 Edegem, Belgium. Electronic address:

Published: March 2018

Unlabelled: Corneal blindness is traditionally treated by transplantation of a donor cornea, or in severe cases by implantation of an artificial cornea or keratoprosthesis. Due to severe donor shortages and the risks of complications that come with artificial corneas, tissue engineering in ophthalmology has become more focused on regenerative strategies using biocompatible materials either with or without cells. The stroma makes up the bulk of the corneal thickness and mainly consists of a tightly interwoven network of collagen type I, making it notoriously difficult to recreate in a laboratory setting. Despite the challenges that come with corneal stromal tissue engineering, there has recently been enormous progress in this field. A large number of research groups are working towards developing the ideal biomimetic, cytocompatible and transplantable stromal replacement. Here we provide an overview of the approaches directed towards tissue engineering the corneal stroma, from classical collagen gels, films and sponges to less traditional components such as silk, fish scales, gelatin and polymers. The perfect stromal replacement has yet to be identified and future research should be directed at combined approaches, in order to not only host native stromal cells but also restore functionality.

Statement Of Significance: In the field of tissue engineering and regenerative medicine in ophthalmology the focus has shifted towards a common goal: to restore the corneal stroma and thereby provide a new treatment option for patients who are currently blind due to corneal opacification. Currently the waiting lists for corneal transplantation include more than 10 million patients, due to severe donor shortages. Alternatives to the transplantation of a donor cornea include the use of artificial cornea, but these are by no means biomimetic and therefore do not provide good outcomes. In recent years a lot of work has gone into the development of tissue engineered scaffolds and other biomaterials suitable to replace the native stromal tissue. Looking at all the different approaches separately is a daunting task and up until now there was no review article in which every approach is discussed. This review does include all approaches, from classical tissue engineering with collagen to the use of various alternative biomaterials and even fish scales. Therefore, this review can serve as a reference work for those starting in the field and but also to stimulate collaborative efforts in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2018.01.023DOI Listing

Publication Analysis

Top Keywords

tissue engineering
20
corneal
8
transplantation donor
8
donor cornea
8
artificial cornea
8
severe donor
8
donor shortages
8
stromal tissue
8
stromal replacement
8
corneal stroma
8

Similar Publications

Objective: This study aimed to evaluate the potential of combining allogeneic adipose-derived mesenchymal stem cells (ADSCs) with autologous concentrated growth factors (CGF) to enhance the repair of mandibular defects in rabbits.

Methods: Rabbit ADSCs were characterized using flow cytometry, identifying CD73, CD90, and CD105 as surface markers, while Alizarin Red Staining confirmed osteogenic differentiation, showing substantial mineralized deposits by day 21. A total of 24 New Zealand white rabbits were divided into four groups: BLANK (control group), CGF, ADSCs, and ADSCs/CGF.

View Article and Find Full Text PDF

: Yellow fever virus (YFV) (, ) is the etiologic agent of yellow fever (YF), a vector-borne disease with significant morbidity and mortality across the tropics and neotropics, despite having a highly efficacious and safe vaccine (17D). Vaccination provides lifelong protection from YF disease mediated by humoral immunity. There are several versions of the original 17D vaccine: 17D-204 (marketed in the USA as YF-VAX, in France as Stamaril, and in China as Tiantan-V), 17D-213 (Russian Federation), and 17DD (by FIOCRUZ in Brazil).

View Article and Find Full Text PDF

A NIRS-Based Technique for Monitoring Brain Tissue Oxygenation in Stroke Patients.

Sensors (Basel)

December 2024

Division of Neurological Rehabilitiation, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.

Stroke is a global health issue caused by reduced blood flow to the brain, which leads to severe motor disabilities. Measuring oxygen levels in the brain tissue is crucial for understanding the severity and evolution of stroke. While CT or fMRI scans are preferred for confirming a stroke due to their high sensitivity, Near-Infrared Spectroscopy (NIRS)-based systems could be an alternative for monitoring stroke evolution.

View Article and Find Full Text PDF

The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!