Tardive dyskinesia (TD) is a common adverse effect observed in patients with long-term use of typical antipsychotic medications. A vacuous chewing movement (VCM) model induced by haloperidol has been used to study these abnormalities in experimental animals. The cause of TD and its treatment remain unknown, but several lines of evidence suggest that dopamine receptor supersensitivity and gamma-aminobutyric acid (GABA) insufficiency play important roles in the development of TD. This study investigated the effects of treatment with the GABA-mimetic drug gabapentin on the development of haloperidol-induced VCMs. Male mice received vehicle, haloperidol (1.5 mg/kg), or gabapentin (GBP, 100 mg/kg) intraperitoneally during 28 consecutive days. Quantification of VCMs was performed before treatment (baseline) and on day 28, and an open-field test was also conducted on the 28th day of treatment. The administration of gabapentin prevented the manifestation of haloperidol-induced VCMs. Treatment with haloperidol alone reduced the locomotor activity in the open-field test that was prevented by co-treatment with gabapentin. We did not find any differences among the groups nor in the tyrosine hydroxylase (TH) or glutamic acid decarboxylase (GAD) immunoreactivity or monoamine levels in the striatum of mice. These results suggest that treatment with gabapentin, an analog of GABA, can attenuate the VCMs induced by acute haloperidol treatment in mice without alterations in monoamine levels, TH, or GAD67 immunoreactivity in the striatum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2018.01.003DOI Listing

Publication Analysis

Top Keywords

vacuous chewing
8
haloperidol-induced vcms
8
open-field test
8
monoamine levels
8
treatment
7
gabapentin
6
gabapentin reduces
4
reduces haloperidol-induced
4
haloperidol-induced vacuous
4
chewing movements
4

Similar Publications

Aim: We aimed to create a rat model of drug-induced parkinsonism and tardive dyskinesia by chronic administration of haloperidol and examine the expression of direct and indirect pathway markers in the striatum of the model rats.

Methods: We treated 21 rats, 14 with haloperidol decanoate and 7 with placebo. The number of vacuous chewing movements per 2 min was counted, and haloperidol-treated rats were classified into two groups: mild and severe tardive dyskinesia.

View Article and Find Full Text PDF

Antipsychotic medications are used to treat a psychological condition called 'Schizophrenia'. However, its long-term administration causes irregular involuntary motor movements, targeting the orofacial regions. Glycyrrhizic acid (GA) is a naturally occurring triterpene saponin glycoside obtained from the roots of the Glycyrrhiza glabra (liquorice) plant and well known for its antioxidant, antiapoptotic and neuroprotective abilities.

View Article and Find Full Text PDF

Cannabigerol Mitigates Haloperidol-Induced Vacuous Chewing Movements in Mice.

Neurotox Res

December 2024

Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Chronic use of typical antipsychotics can lead to varying motor effects depending on the timing of analysis. Acute treatment typically induces hypokinesia, resembling parkinsonism, while repeated use can result in tardive dyskinesia, a hyperkinetic syndrome marked by involuntary orofacial movements, such as vacuous chewing movements in mice. Tardive dyskinesia is particularly concerning due to its potential irreversibility and associated motor discomfort.

View Article and Find Full Text PDF

Effects of Acute Haloperidol Treatment on Dopaminergic Markers, GAD and A Receptors in Rats with High and Low VCMs.

Neurochem Res

November 2024

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.

Vacuous chewing movements (VCM) have been utilized as an experimental model of orofacial dyskinesia (OD) in rodents to study the underlying molecular mechanisms related to tardive dyskinesia (TD). This study aimed to investigate if the acute treatment with haloperidol can alter components of the dopaminergic synapse or its modulators such as glutamic acid decarboxylase (GAD) and adenosine 2A (A) receptor. Furthermore, to evaluate if changes in molecular markers are associated with the number of VCMs induced by haloperidol in rats it is proposing a method to classify the animals into High and Low VCM groups.

View Article and Find Full Text PDF

Clavulanic acid (ClvA), a beta-lactamase inhibitor, is being explored for its significant neuroprotective potential. The effects of ClvA were assessed both individually and in combination with crocin (Cr), an antioxidant derived from saffron, in the context of tardive dyskinesia (TD). In rat haloperidol (Hp)-induced-TD (1 mg/kg, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!