Preparing and executing grasping movements demands the coordination of sensory information across multiple scales. The position of an object, required hand shape, and which of our hands to extend must all be coordinated in parallel. The network formed by the macaque anterior intraparietal area (AIP) and hand area (F5) of the ventral premotor cortex is essential in the generation of grasping movements. Yet, the role of this circuit in hand selection is unclear. We recorded from 1342 single- and multi-units in AIP and F5 of two macaque monkeys (Macaca mulatta) during a delayed grasping task in which monkeys were instructed by a visual cue to perform power or precision grips on a handle presented in five different orientations with either the left or right hand, as instructed by an auditory tone. In AIP, intended hand use (left vs. right) was only weakly represented during preparation, while hand use was robustly present in F5 during preparation. Interestingly, visual-centric handle orientation information dominated AIP, while F5 contained an additional body-centric frame during preparation and movement. Together, our results implicate F5 as a site of visuo-motor transformation and advocate a strong transition between hand-independent and hand-dependent representations in this parieto-frontal circuit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786043 | PMC |
http://dx.doi.org/10.1038/s41598-018-20051-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!