Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction-the underlying magnetoelastic stress-can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786062PMC
http://dx.doi.org/10.1038/s41467-017-02730-7DOI Listing

Publication Analysis

Top Keywords

electron diffraction
8
lattice motion
8
phenomenological description
4
description magnetostriction
4
magnetostriction magnetostriction
4
magnetostriction strain
4
strain induced
4
induced change
4
change magnetization
4
magnetization universal
4

Similar Publications

PbZrTiO cubes with tunable sizes and cuboids have been hydrothermally synthesized. PbZrTiO cubes with three different Zr : Ti atomic percentages were also prepared. Analysis of synchrotron X-ray diffraction (XRD) patterns reveals the presence of two lattice components for these samples.

View Article and Find Full Text PDF

In this review, we present a new set of machine learning-based materials research methodologies for polycrystalline materials developed through the Core Research for Evolutionary Science and Technology project of the Japan Science and Technology Agency. We focus on the constituents of polycrystalline materials (i.e.

View Article and Find Full Text PDF

The misuse and uncontrolled release of pharmaceuticals into water bodies lead to environmental challenges and the development of resistance, thereby reducing their effectiveness. To mitigate these problems, it is essential to identify pharmaceuticals in water sources and eliminate them prior to human use. This study presents the designing of a novel nanosensor for the detection of the antibiotic Cefoperazone Sodium Sulbactam Sodium (CSSS).

View Article and Find Full Text PDF

Engineering 0.8BiFeO-0.2BaTiO multiferroics with improved dielectric and magnetic properties samarium doping.

RSC Adv

January 2025

IMMM, Institut des Molécules et Matériaux du Mans Bd Charles Nicolle 72000 Le Mans France.

Samarium (Sm) modification is emerging as a powerful strategy to manipulate the electrical response of 0.8BiFeO-0.2BaTiO (BFBT) multiferroic ceramics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!