Early weaning results in intestinal dysfunction in piglets, while sulfur amino acids (SAA) are involved in improving intestinal functions. We tested a hypothesis that dietary supplementation with SAA can improve intestinal functions of weaning piglets and analyzed the effects of different dietary SAA levels on intestinal functions. A total of 80 piglets (Duroc × Landrace × Yorkshire) were weaned at 21 d of age and randomly assigned to one of the five diets that contained 0.53%, 0.63%, 0.74%, 0.85%, or 0.96% SAA, which corresponded to 70%, 85%, 100%, 115%, or 130% of the SAA:Lys ratio recommended by the National Research Council (2012). The 14 d feeding experiment involved 16 pens per diet and one piglet per pen. Eight randomly selected piglets from each treatment were euthanized for tissue sampling on day 7 and 14 post weaning. Supplementation with SAA led to a rise over time in G:F (linear, P = 0.001; quadratic, P = 0.001). Between day 0 and 14 of treatment, the jejunal crypt depth decreased (linear, P = 0.018; quadratic, P = 0.015), while that of the duodenal villus (linear, P = 0.049) and ileal villus width (linear, P = 0.029; quadratic, P = 0.034) increased. The activities of jejunal alkaline phosphatase (ALP) were quadratically increased (P = 0.040) from day 0 to 14 due to dietary SAA. Dietary SAA also elevated the activities of jejunal lactase (linear, P = 0.003; quadratic, P = 0.004), jejunal sucrase (linear, P = 0.032; quadratic, P = 0.027), and jejunal contents of glutathione (GSH) from day 0 to 7, as well as the activity of jejunal maltase (linear, P = 0.014; quadratic, P = 0.001) between day 0 and 14. During the first wk, dietary SAA linearly increased the amounts of intestinal-type fatty acid-binding protein (I-FABP) (P = 0.048) and SGLT-1 (P = 0.021) and linearly decreased the amount of GLUT2 (P = 0.029) proteins in the jejunum. The abundance of jejunal I-FABP (P = 0.044) and PEPT1 (P = 0.049) protein linearly increased from day 0 to 14 in response to this supplementation. These findings indicate that there is a dose-dependent response to dietary SAA on feed efficiency and intestinal parameters of weanling pigs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093572PMC
http://dx.doi.org/10.1093/jas/skx003DOI Listing

Publication Analysis

Top Keywords

dietary saa
20
intestinal functions
12
saa
9
effects dietary
8
sulfur amino
8
amino acids
8
weaning piglets
8
supplementation saa
8
quadratic 0001
8
0001 day
8

Similar Publications

Introduction: The aim of the study was to compare selected leukocyte subpopulations and the serum amyloid A (SAA) concentration in the peripheral blood of cows at different stages of lactation. The blood of cows receiving a probiotic as a dietary supplement was compared with the blood of cows not receiving it.

Material And Methods: The research was conducted on 20 pregnant dairy cows randomly divided into two groups of 10 cows each.

View Article and Find Full Text PDF

Twenty-seven gestating primiparous sows (203 ± 9.1 kg initial body weight on d 89 ± 1 of gestation) were selected to determine the effect of standardized ileal digestible (SID) sulfur-containing amino acid (SAA) intake during late gestation on whole-body nitrogen (N) retention and subsequent litter performance. Primiparous sows were assigned to one of two experimental diets that provided SAAs at 63 or 200% of the estimated requirements during late gestation (0.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of milk thistle (Silybum marianum L., SM) oil supplementation on proinflammatory cytokines, acute phase proteins, rumen metagenomic profile, rumen fluid variables and performance during the milk feeding period of Holstein calves. In the present study, 24 calves that consumed quality and sufficient amount of colostrum (≥50 mg/ml IgG) after birth were divided into three groups, with 8 animals in each group (4 males + 4 females).

View Article and Find Full Text PDF

spp. Aqueous Extracts and Their Constituent Salvianolic Acid A Induce Nrf2-Dependent Cellular Antioxidant Protection Against Oxidative Stress in Caco-2 Cells.

Antioxidants (Basel)

October 2024

Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.

The increasing incidence of colorectal cancer and inflammatory diseases poses a major health concern, with oxidative stress playing a significant role in the onset of these pathologies. Factors such as excessive consumption of sugar-rich and fatty foods, synthetic food additives, pesticides, alcohol, and tobacco contribute to oxidative stress and disrupt intestinal homeostasis. Functional foods arise as a potential tool to regulate redox balance in the intestinal tract.

View Article and Find Full Text PDF

Effects of long-term almond consumption on markers for vascular function and cardiometabolic risk in men and women with prediabetes: results of a randomized, controlled cross-over trial.

Eur J Nutr

November 2024

Department of Nutrition and Movement Sciences, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.

Article Synopsis
  • This study aimed to explore the long-term effects of eating almonds on vascular health and blood pressure in people with obesity and prediabetes.
  • Thirty-four participants went through a trial where they consumed 50g of almonds daily for five months, with measurements taken on vascular function and inflammatory markers before and after the intervention.
  • Results showed that while almond consumption did not significantly change arterial stiffness or various serum markers, it did lower overall blood pressure and its variability, suggesting potential benefits for managing blood pressure without affecting arterial health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!