Physiological Effects of Visual Stimulation with Forest Imagery.

Int J Environ Res Public Health

Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwa-no-ha, Kashiwa, Chiba 277-0882, Japan.

Published: January 2018

This study was aimed to clarify the physiological effects of visual stimulation using forest imagery on activity of the brain and autonomic nervous system. Seventeen female university students (mean age, 21.1 ± 1.0 years) participated in the study. As an indicator of brain activity, oxyhemoglobin (oxy-Hb) concentrations were measured in the left and right prefrontal cortex using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) was used as an indicator of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflected parasympathetic nervous activity, and the ratio of low-frequency (LF) and high-frequency components (LF/HF), which reflected sympathetic nervous activity, were measured. Forest and city (control) images were used as visual stimuli using a large plasma display window. After sitting at rest viewing a gray background for 60 s, participants viewed two images for 90 s. During rest and visual stimulation, HRV and oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of feelings was performed using a modified semantic differential (SD) method. The results showed that visual stimulation with forest imagery induced (1) a significant decrease in oxy-Hb concentrations in the right prefrontal cortex and (2) a significant increase in perceptions of feeling "comfortable," "relaxed," and "natural."

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858282PMC
http://dx.doi.org/10.3390/ijerph15020213DOI Listing

Publication Analysis

Top Keywords

visual stimulation
16
stimulation forest
12
forest imagery
12
prefrontal cortex
12
nervous activity
12
physiological effects
8
effects visual
8
autonomic nervous
8
oxy-hb concentrations
8
visual
5

Similar Publications

Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.

View Article and Find Full Text PDF

Background: Repetitive transcranial magnetic stimulation enhances cognition in people with mild cognitive impairment (MCI). Whereas conventional treatment requires daily sessions for 4-6 weeks, accelerated intermittent theta burst stimulation (iTBS) shortens the treatment course to just 3 days, substantially improving feasibility of use in people with MCI. We conducted a Phase I safety and feasibility trial of iTBS in MCI, finding preliminary evidence of cognitive improvement.

View Article and Find Full Text PDF

Technology and Dementia Preconference.

Alzheimers Dement

December 2024

Yuan Ze University, Taoyuan CIty, Taoyuan, Taiwan.

Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.

View Article and Find Full Text PDF

Background: When it comes to reducing children's fear, anxiety, and discomfort during dental procedures, substantial local anesthetic delivery promotes adequate intervention. In the dental operatory, local anesthetic injections are the most anticipated or feared stimuli. The application of topical anesthetics, cryotherapy, and transcutaneous electrical nerve stimulation (TENS) to the oral mucosa prior to local anesthetic injections can alter pain perception in children.

View Article and Find Full Text PDF

Background: Trigeminal neuralgia (TN) is a prevalent and debilitating craniofacial pain disorder characterized by severe, unilateral, shock-like pain. Standard treatments include anti-epileptic drugs and surgical interventions, but many patients experience limited relief or adverse effects. Non-invasive therapies, such as transcutaneous electrical nerve stimulation (TENS), have emerged as alternative options.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!