We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855925 | PMC |
http://dx.doi.org/10.3390/s18020358 | DOI Listing |
Sci Rep
December 2024
School of Electrical Engineering, Kookmin University, Seoul, 02707, Republic of Korea.
This study optimizes V and ΔV in amorphous indium-gallium-zinc-oxide (a-IGZO) field-effect transistors (FETs) by examining the influence of both channel length (L) and Ga composition. It was observed that as the ratio of In: Ga: Zn changed from 1:1:1 to 0.307:0.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5612AP, The Netherlands.
Brain-computer interfaces (BCIs) are evolving toward higher electrode count and fully implantable solutions, which require extremely low power densities (<15mW cm). To achieve this target, and allow for a large and scalable number of channels, flexible electronics can be used as a multiplexing interface. This work introduces an active analog front-end fabricated with amorphous Indium-Gallium-Zinx-Oxide (a-IGZO) Thin-Film Transistors (TFTs) on foil capable of active matrix multiplexing.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea.
Nanomaterials (Basel)
October 2024
School of Physics and Electronics, Hunan University, Changsha 410082, China.
Although the irreplaceable position of silicon (Si) semiconductor materials in the field of information has become a consensus, new materials continue to be sought to expand the application range of semiconductor devices. Among them, research on wide bandgap semiconductors has already achieved preliminary success, and the relevant achievements have been applied in the fields of energy conversion, display, and storage. However, similar to the history of Si, the immature material grown and device manufacturing processes at the current stage seriously hinder the popularization of wide bandgap semiconductor-based applications, and one of the crucial issues behind this is the defect problem.
View Article and Find Full Text PDFNanoscale
October 2024
School of Electrical Engineering, Kookmin University, Seoul 02707, South Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!