This work experimentally demonstrates that the negative capacitance effect can be used to significantly improve the key figures of merit of tunnel field effect transistor (FET) switches. In the proposed approach, a matching condition is fulfilled between a trained-polycrystalline PZT capacitor and the tunnel FET (TFET) gate capacitance fabricated on a strained silicon-nanowire technology. We report a non-hysteretic switch configuration by combining a homojunction TFET and a negative capacitance effect booster, suitable for logic applications, for which the on-current is increased by a factor of 100, the transconductance by 2 orders of magnitude, and the low swing region is extended. The operation of a hysteretic negative capacitance TFET, when the matching condition for the negative capacitance is fulfilled only in a limited region of operation, is also reported and discussed. In this late case, a limited improvement in the device performance is observed. Overall, the paper demonstrates the main beneficial effects of negative capacitance on TFETs are the overdrive and transconductance amplification, which exactly address the most limiting performances of current TFETs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aaa590DOI Listing

Publication Analysis

Top Keywords

negative capacitance
24
matching condition
8
capacitance
7
negative
6
hysteretic non-hysteretic
4
non-hysteretic negative
4
capacitance tunnel
4
tunnel fets
4
fets performance
4
performance work
4

Similar Publications

Article Synopsis
  • CRAFT is a fusion technology facility in China focused on developing and validating fusion technology through methods like neutral beam injection.
  • A new negative ion based neutral beam injector is being created with a beam energy of 400 keV, utilizing a core snubber for surge suppression in its power supply system.
  • The design of the core snubber involves careful consideration of transmission line characteristics, and initial testing shows it effectively suppresses peak ignition current and oscillation.
View Article and Find Full Text PDF

Negative capacitance (NC) effects in ferroelectrics can potentially break fundamental limits of power dissipation known as "Boltzmann tyranny." However, the origin of transient NC of ferroelectrics, which is attributed to two different mechanisms involving free-energy landscape and nucleation, is under intense debate. Here, we report the coexistence of transient NC and an S-shaped anomaly during the switching of ferroelectric hexagonal ferrites capacitor in an RC circuit.

View Article and Find Full Text PDF

The pervasive model for a solvated, ion-filled nanopore is often a resistor in parallel with a capacitor. For conical nanopore geometries, here we propose the inclusion of a Warburg-like element, which is necessary to explain otherwise anomalous observations such as negative capacitance and low-pass filtering of translocation events (we term this phenomenon as Warburg filtering). The negative capacitance observed here has long equilibration times and memory (that is, mem-capacitance) at negative voltages.

View Article and Find Full Text PDF
Article Synopsis
  • Capacitive sensors are essential for superconducting gravimeters due to their precision and minimal drift, prompting the development of a cryogenic front-end circuit to address parasitic capacitance issues.
  • The new circuit includes a noiseless superconducting transformer and a low-noise cryogenic preamplifier, significantly boosting the transfer coefficient and reducing displacement noise compared to circuits operating at room temperature.
  • Testing of the cryogenic front-end circuit with a superconducting gravimeter showed that the gravity data aligned well with theoretical models, indicating its effectiveness and stability over time.
View Article and Find Full Text PDF

The introduction of heterovalent metal ion doping in the lead (Pb) halide perovskites presents a novel opportunity to manipulate the electronic and ionic properties by introducing dopant charges and increasing the carrier concentration in single crystals. While previous studies have reported on the use of bismuth (Bi) doping in methylammonium lead tribromide (MAPbBr) to adjust the optical properties, the comprehensive impact of Bi doping on the structural and electronic properties of MAPbBr single crystals remains unexplored. This research, therefore, delves into the anomalous behavior of the structural, optical, and electrical properties of pristine and doped MAPbBr single crystals through a combination of experimental and computational studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!