Dose-volume and radiobiological dependence on the calculation grid size in prostate VMAT planning.

Med Dosim

Medical Physics Department, Grand River Regional Cancer Centre, Kitchener, ON N2G 1G3, Canada; Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Published: March 2019

This study evaluated the effects of dose-volume and radiobiological dependence on the calculation grid size in prostate volumetric-modulated arc therapy (VMAT) planning. Ten patients with prostate cancer were selected for this retrospective treatment planning study. Prostate VMAT plans were created for the patients using the 6 MV photon beam produced by a Varian TrueBEAM linac with the calculation grid size equal to 1, 2, 2.5, 3, 4, and 5 mm. Dose-volume histograms (DVHs) of targets and organs at risk were generated for different grid sizes. We calculated the radiobiological parameters of the tumor control probability (TCP) of clinical target volume (CTV) and planning target volume (PTV), and the normal tissue complication probability (NTCP) of organs at risk (rectal wall, rectum, bladder wall, bladder, left femur, and right femur). The homogeneity, conformity, and gradient indexes of CTV and PTV were calculated for different grid sizes. The TCP of PTV was found decreasing with a rate of 0.06%/mm when the calculation grid size increased from 1 to 5 mm. On the other hand, both NTCPs of rectal wall and rectum were found decreasing with rates of 0.03%/mm and 0.05%/mm, respectively, with an increase of grid size. The homogeneity index of PTV increased with a rate of 0.57/mm of the calculation grid size, whereas the conformity index of PTV decreased with a rate of 0.0075/mm. The gradient index of PTV was found increasing with a rate equal to 0.05/mm. In prostate VMAT planning, variations of dose-volume and radiobiological parameters with calculation grid size on PTV, rectal wall, and rectum were more significant than those of CTV and other organs at risk such as bladder wall, bladder, and femurs. Results in this study are important in the treatment planning quality assurance when the calculation grid size is varied to compromise a shorter dose computing time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meddos.2017.12.002DOI Listing

Publication Analysis

Top Keywords

grid size
32
calculation grid
28
dose-volume radiobiological
12
prostate vmat
12
vmat planning
12
organs risk
12
rectal wall
12
wall rectum
12
grid
10
radiobiological dependence
8

Similar Publications

A vehicle-to-grid (V2G) technology enables bidirectional power exchange between electric vehicles (EVs) and the power grid, presenting enhanced grid stability and load management opportunities. This study investigates a comprehensive microgrid system integrating EVs with solar (8 MW), wind (4.5 MW), and diesel generation sources, focusing on peak load reduction and frequency regulation capabilities.

View Article and Find Full Text PDF

Exploring the spatial-temporal evolution characteristics of land use carbon emissions and their influencing factors is of great significance for the optimization of land use structure, the formulation of emission reduction policies, and the development of a regional low-carbon economy. Based on land cover and energy consumption data, a multi-parameter land use carbon emission accounting system was constructed to calculate land use carbon emissions in Shandong Province. Moreover, the spatial-temporal evolution and influencing factors of land use carbon emissions were analyzed based on the Gini coefficient and logarithmic mean Divisia index.

View Article and Find Full Text PDF

Nanogold is an emerging material for enhancing surface-enhanced Raman scattering (SERS), which enables the detection of hazardous analytes at trace levels. This study presents a simple, single-step plasma synthesis method to control the size and yield of Au nanoparticles by using plasma-liquid redox chemistry. The pin-based argon plasma reduces the Au precursor in under 5 min, synthesizing Au spherical particles ranging from ∼20 nm at 0.

View Article and Find Full Text PDF

Global network control from local information.

Chaos

December 2024

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.

In the classical control of network systems, the control actions on a node are determined as a function of the states of all nodes in the network. Motivated by applications where the global state cannot be reconstructed in real time due to limitations in the collection, communication, and processing of data, here we introduce a control approach in which the control actions can be computed as a function of the states of the nodes within a limited state information neighborhood. The trade-off between the control performance and the size of this neighborhood is primarily determined by the condition number of the controllability Gramian.

View Article and Find Full Text PDF

Identification of superior haplotypes and candidate gene for seed size-related traits in soybean ( L.).

Mol Breed

January 2025

Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China.

Unlabelled: Seed size is an economically important trait that directly determines the seed yield in soybean. In the current investigation, we used an integrated strategy of linkage mapping, association mapping, haplotype analysis and candidate gene analysis to determine the genetic makeup of four seed size-related traits viz., 100-seed weight (HSW), seed area (SA), seed length (SL), and seed width (SW) in soybean.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!