Objectives: Camphorquinone (CQ) is the most important photoinitiator used in dental composite resins. Sparse data indicate a mutagenic potential of CQ. Therefore, it was aim of this study to evaluate the cytotoxicity, genotoxicity, and mutagenicity of CQ in L5178Y TK mouse lymphoma cells.
Methods: L5178Y/TK cells were exposed to different concentrations of non-irradiated CQ (0.25-2.5mM). Cytotoxicity was evaluated by propidium iodide assay, determination of suspension growth rate, relative total growth and the mitotic index. Intracellular levels of reactive oxygen/nitrogen species (ROS/RNS) were quantified by 2',7'-dichlorofluoresceine diacetate (DCFH-DA). Early induction of DNA strand breaks and oxidative DNA base lesions was assessed using the 8-hydroxyguanine DNA-glycosylase 1 (hOGG1)-modified alkaline comet assay, whereas mutagenicity of CQ was determined in the mouse lymphoma TK assay (MLA), according to OECD Guideline No. 490.
Results: CQ (0.5-2.5mM) induced concentration- and time-dependent inhibition of cell growth associated with increased ROS/RNS production, amounting to 2342%±1108% of controls after 90min at 2.5mM. Additionally, CQ concentration-dependently caused direct DNA-damage, i.e. formation of DNA strand breaks and 8-hydroxy-2'-deoxyguanosine. Whereas the MLA indicated lack of mutagenicity of CQ after a 4h of treatment, CQ concentration-dependently increased total mutant frequency (MF) after 24h (about 2-fold at 2.5mM). But, based on the global evaluation factor concept, increase in MF did not reach biologically relevance.
Significance: CQ induced concentration-dependent, cytotoxic and genotoxic effects in L5178Y/TK cells, most likely due to oxidative stress, but without mediating obvious biological relevant mutagenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2017.12.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!