A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crystal structure of cytoplasmic acetoacetyl-CoA thiolase from Saccharomyces cerevisiae. | LitMetric

Crystal structure of cytoplasmic acetoacetyl-CoA thiolase from Saccharomyces cerevisiae.

Acta Crystallogr F Struct Biol Commun

Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

Published: January 2018

Thiolases are vital enzymes which participate in both degradative and biosynthetic pathways. Biosynthetic thiolases catalyze carbon-carbon bond formation by a Claisen condensation reaction. The cytoplasmic acetoacetyl-CoA thiolase from Saccharomyces cerevisiae, ERG10, catalyses carbon-carbon bond formation in the mevalonate pathway. The structure of a S. cerevisiae biosynthetic thiolase has not previously been reported. Here, crystal structures of apo ERG10 and its Cys91Ala variant were solved at resolutions of 2.2 and 1.95 Å, respectively. The structure determined shows that ERG10 shares the characteristic thiolase superfamily fold, with a similar active-site architecture to those of type II thiolases and a similar binding pocket, apart from Ala159 at the entrance to the pantetheine-binding cavity, which appears to be a determinant of the poor binding ability of the substrate. Moreover, comparative binding-pocket analysis of molecule B in the asymmetric unit of the apo structure with that of the CoA-bound complex of human mitochondrial acetoacetyl-CoA thiolase indicates the canonical binding mode of CoA. Furthermore, the steric hindrance revealed in a structural comparison of molecule A with the CoA-bound form raise the possibility of conformational changes that are associated with substrate binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947687PMC
http://dx.doi.org/10.1107/S2053230X17016971DOI Listing

Publication Analysis

Top Keywords

acetoacetyl-coa thiolase
12
cytoplasmic acetoacetyl-coa
8
thiolase saccharomyces
8
saccharomyces cerevisiae
8
carbon-carbon bond
8
bond formation
8
thiolase
5
crystal structure
4
structure cytoplasmic
4
cerevisiae thiolases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!