A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrogenated TiO nanotube photonic crystals for enhanced photoelectrochemical water splitting. | LitMetric

We report the design, fabrication and characterization of novel TiO nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO nanotube photonic crystals are fabricated by annealing of anodized TiO nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aaaaceDOI Listing

Publication Analysis

Top Keywords

tio nanotube
24
nanotube photonic
24
photonic crystals
24
oxygen vacancies
16
water splitting
12
novel tio
12
disordered surface
12
surface layer
12
substantial oxygen
8
pec water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!