In recent years, symptoms of vein yellowing and leaf roll in pepper crops associated with the presence of poleroviruses (genus Polerovirus, family Luteoviridae) have been emerging in many countries worldwide. Spain was the first country in Europe where the yellowing disease of pepper was observed. In this work, a polerovirus isolate from Spain that infects pepper and has been shown to be transmitted by the aphid Aphis gossyppii (Spain-Almería 2-2013) was sequenced and compared with isolates from Japan, Israel, China and Australia. The genome (6125 nt in length, GenBank accession number KY523072) of the isolate from Spain has the typical organization of poleroviruses and contains seven open reading frames (ORF0 to ORF5 and ORF3a), putatively encoding proteins P0 to P5 and P3a. A comparison of the sequence from Spain with the four complete sequences available for poleroviruses infecting pepper showed a closer relationship to the isolate from Israel and supports the existence of a complex of at least five polerovirus species. Given that the symptoms caused by all pepper poleroviruses described to date are similar, if not identical, we propose to name them "pepper vein yellows virus 1" to "pepper vein yellows virus 5" (PeVYV-1 to PeVYV-5), with PeVYV-5 corresponding to the polerovirus from Spain described in this work. Our results and those published over the last few years have shown that the emergent poleroviruses threatening pepper crops around the world are highly complex due to recombination events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-018-3733-x | DOI Listing |
Virus Res
December 2024
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States; USDA ARS, Horticultural Crops Disease and Pest Management Unit, Corvallis, OR, United States. Electronic address:
New and emerging viral problems may be contributing to blueberry decline. In this research we described a new virus detected in Oregon blueberry production field and surveyed the region for its potential spread. The complete genome sequence of a putative new member of the genus Luteovirus was obtained from blueberry (Vaccinium corymbosum L.
View Article and Find Full Text PDFTrends Plant Sci
December 2024
UMR Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, 33882, Villenave d'Ornon, France. Electronic address:
Viruses explore the potential multifunctional capacity of the proteins encoded in their compact genome to establish infection. P4 of luteoviruses has emerged as one such multifunctional protein. Expressed from an open reading frame (ORF) nested within coat protein ORF, it displays diverse subcellular localizations and interactions, reflecting its complex role in virus infection.
View Article and Find Full Text PDFFront Microbiol
July 2024
Department of Plant Pathology, University of California, Davis, CA, Unites States.
Carrot motley dwarf (CMD) is a viral disease complex caused by co-infection of the polerovirus carrot red leaf virus with the umbraviruses carrot mottle virus or carrot mottle mimic virus, and/or a tombusvirus like associated RNA (tlaRNA), which depend on co-infection with a helper polerovirus to gain aphid transmissibility. In 2020 and 2021 carrot samples from Washington, United States (U.S.
View Article and Find Full Text PDFVirus Genes
October 2024
Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
The cotton leafroll dwarf virus (CLDV), an important viral pathogen responsible for substantial losses in cotton crops, has recently emerged in the United States (US). Although CLDV shares similarities with other members of the genus Polerovirus in terms of encoded proteins, their functional characteristics remain largely unexplored. In this study, we expressed and analyzed each protein encoded by CLDV to determine its intracellular localization using fluorescence protein fusion.
View Article and Find Full Text PDFPest Manag Sci
October 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.
Background: The complex interaction between plant viruses and their insect vectors is the basis for the epidemiology of plant viruses. The 'Vector Manipulation Hypothesis' (VMH) was proposed to demonstrate the evolution of strategies in plant viruses to enhance their transmission to new hosts through direct effects on insect vector behavior and/or physiology. However, the aphid vectors used in previous studies were mostly obtained by feeding on virus-infected plants and as a result, it was difficult to eliminate the confounding effects of infected host plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!