Zinc is a vital co-factor for insulin metabolism in the pancreatic β-cell, involved in synthesis, maturation, and crystallization. Two families of zinc transporters, namely SLC30A (ZNT) and SLC39A (ZIP) are involved in maintaining cellular zinc homeostasis in mammalian cells. Single nuclear polymorphisms or mutations in zinc transporters have been associated with insulin resistance and risk of type 2 diabetes (T2D) in both humans and mice. Thus, mice can be useful for studying the underlying mechanisms of zinc-associated risk of T2D development. To determine potential differences in zinc transporter expression and cellular localization in the pancreatic β-cells between humans and mice, we examined all members (ZNT1-10) of the ZNT family in pancreatic islets and in β-cell lines derived from both species using immunohistochemistry and immunofluorescence microscopic analysis. We found that there were no substantial differences in the expression of nine ZNT proteins in the human and mouse islets and β-cells with exception of ZNT3, which was only detected in human β-cells, but not in mouse β-cells. Moreover, we found that ZNT2 was localized on the cell surface of both human and mouse β-cells, suggesting a role of ZNT2 in direct export of zinc out of the β-cell. Together, our study suggests functional conservations of the ZNT proteins between humans and mice. We believe that our results are of interest for future studies in the association of zinc metabolism with risk of T2D in humans using mouse models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10735-017-9753-0 | DOI Listing |
J Transl Med
January 2025
Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
Background: HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China.
Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Intensive Care Medicine, No. 971st Hospital of the People's Liberation Army Navy, Qingdao, Shandong Province, PR China.
Background: Ursodeoxycholic acid (UDCA), traditionally recognized for its hepatoprotective effects, has also shown potential in protecting kidney injury. This study aimed to evaluate the protective effects of UDCA against sepsis-induced acute kidney injury (AKI) and to elucidate the underlying mechanisms.
Methods: Sixty male C57BL/6 N mice were utilized to establish a sepsis-induced AKI model through intravenous injection of lipopolysaccharides (LPS, 10 mg/kg).
JMIRx Med
January 2025
Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.
Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!