Predicting the ergogenic response to methylphenidate.

Eur J Appl Physiol

Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa.

Published: April 2018

Purpose: Methylphenidate (MPH) and other stimulants have been shown to enhance physical performance. However, stimulant research has almost exclusively been conducted in young, active persons with a normal BMI, and may not generalize to other groups. The purpose of this study was to determine whether the ergogenic response to MPH could be predicted by individual level characteristics.

Methods: We investigated whether weekly minutes of moderate-to-vigorous physical activity (MVPA), age, and BMI could predict the ergogenic response to MPH. In a double-blind, cross-over design 29 subjects (14M, 15F, 29.7 ± 9.68 years, BMI: 26.1 ± 6.82, MVPA: 568.8 ± 705.6 min) ingested MPH or placebo before performing a handgrip task. Percent change in mean force between placebo and MPH conditions was used to evaluate the extent of the ergogenic response.

Results: Mean force was significantly higher in MPH conditions [6.39% increase, T(25) = 3.09, p = 0.005 118.8 ± 37.96 (± SD) vs. 111.8 ± 34.99 Ns] but variable (coefficient of variation:163%). Using linear regression, we observed that min MVPA (T(25) = -2.15, β = -0.400, p = 0.044) and age [T(25) = -3.29, β = -0.598, p = 0.003] but not BMI [T(25) = 1.67, β = 0.320 p = 0.109] significantly predicted percent change in mean force in MPH conditions.

Conclusions: We report that lower levels of physical activity and younger age predict an improved ergogenic response to MPH and that this may be explained by differences in dopaminergic function. This study illustrates that the ergogenic response to MPH is partly dependent on individual differences such as habitual levels of physical activity and age.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-018-3800-8DOI Listing

Publication Analysis

Top Keywords

ergogenic response
20
response mph
16
physical activity
12
mph
9
percent change
8
change force
8
mph conditions
8
levels physical
8
response
5
ergogenic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!