Little is known about transcription factor regulation during the intraerythrocytic cycle. In order to elucidate the role of the (Pf)NF-YB transcription factor we searched for target genes in the entire genome. PfNF-YB mRNA is highly expressed in late trophozoite and schizont stages relative to the ring stage. In order to determine the candidate genes bound by PfNF-YB a ChIP-on-chip assay was carried out and 297 genes were identified. Ninety nine percent of PfNF-YB binding was to putative promoter regions of protein coding genes of which only 16% comprise proteins of known function. Interestingly, our data reveal that PfNF-YB binding is not exclusively to a canonical CCAAT box motif. PfNF-YB binds to genes coding for proteins implicated in a range of different biological functions, such as replication protein A large subunit (DNA replication), hypoxanthine phosphoribosyltransferase (nucleic acid metabolism) and multidrug resistance protein 2 (intracellular transport).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768380 | PMC |
http://dx.doi.org/10.18632/oncotarget.23053 | DOI Listing |
Arterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
iScience
January 2025
Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
Development and function of an organism depend on coordinated inter-tissue interaction. How such interactions are maintained during tissue renewal and reorganization remains poorly understood. Here, we find that BEN domain transcription factor LIN-14 is required in epidermis for maintaining the position of motor neurons and muscles during developmental tissue reorganization.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China.
Introduction: Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear.
View Article and Find Full Text PDFTheranostics
January 2025
Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
Bone metastasis and skeletal-related complications are primary causes of mortality in advanced-stage prostate cancer (PCa). Epigenetic regulation, particularly histone modification, plays a key role in this process; however, the underlying mechanisms remain elusive. In mouse models, JARID1D was an important mediator of both visceral and bone metastases.
View Article and Find Full Text PDFTheranostics
January 2025
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!