Integrated hepatic transcriptional and serum metabolic studies on circulating nutrient metabolism in diurnal laying hens.

Oncotarget

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Science, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China.

Published: December 2017

The aim of the study was to see the diurnal variation of nutrients metabolism and their regulation under the management of large-scaled production. The hepatic transcriptional and serum metabolic studies on circulating nutrient metabolism were investigated in diurnal laying hens. Liver and blood were collected from 36 hens that were slaughtered at 3:30, 7:30, 11:30, 15:30, 19:30, and 23:30 (n = 6), respectively. The serum amino acid, fatty acid and glucose levels, as well as the hepatic transcriptome were analyzed. The results revealed that the circadian clock genes such as Bmal1, Clock, Per1, and Cry2 displayed circadian rhythms in hen livers. The genes related to circulating nutrient transportation, lipogenesis, lipid catabolism, sterol metabolism, and oxidative/anti-oxidative systems also oscillated. However, the nadir of glucose was observed at 7:30 and peaked at 11:30 in the day. Amino acid levels peaked mainly at night, and most amino acids exhibited circadian rhythms based on CircWave analysis. With the exception of undecanoic acid (C11:0), myristoleic acid (C14:1), cis-11, 14-eicosenoic acid (C20:2), and (cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid) C20:3N6 fatty acids, others peaked at 7:30 and 15:30. The results indicated that the hens required more glucose in the early morning. More proteins should be ingested late in the day, since protein catabolism occurred mostly at night. To remove the redundant fats and lipids, fewer should be ingested, especially during the night. All these results would help to design a more accurate nutrition schedule for improving the performance of laying hens in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768371PMC
http://dx.doi.org/10.18632/oncotarget.23032DOI Listing

Publication Analysis

Top Keywords

circulating nutrient
12
laying hens
12
hepatic transcriptional
8
transcriptional serum
8
serum metabolic
8
metabolic studies
8
studies circulating
8
nutrient metabolism
8
diurnal laying
8
amino acid
8

Similar Publications

Ketogenesis nutritionally supports brain during bacterial infection in Drosophila.

Brain Behav Immun

January 2025

University of South Bohemia, Faculty of Sciences, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic. Electronic address:

Mounting an immune response is a nutritionally demanding process that requires the systemic redistribution of energy stores towards the immune system. This is facilitated by cytokine-induced insulin resistance, which simultaneously promotes the mobilization of lipids and carbohydrates while limiting their consumption in immune-unrelated processes, such as development, growth, and reproduction. However, this adaptation also restricts the availability of nutrients to vital organs, which must then be sustained by alternative fuels.

View Article and Find Full Text PDF

Phosphorus speciation in the hyporheic zone and its response to sediment-water quality-biological activity coupling effect.

J Environ Manage

January 2025

Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Northwest University, Xi'an, 710127, China.

Different speciation of phosphorus in the hyporheic zone exhibit various release potentials, so as to control the phosphorus content in the overlying water. The process of phosphorus release under the multi-factor coupling of rivers is crucial for understanding the element cycle in complex environments. In this paper, the Weihe River in China was used as a case study to analyze the phosphorus speciation and distribution of overlying water and sediments in the hyporheic zone, and the phosphorus release process of sediments under the coupling of multiple factors.

View Article and Find Full Text PDF

Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis.

Adv Exp Med Biol

January 2025

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis.

View Article and Find Full Text PDF

Neuroimmune axis: Linking environmental factors to pancreatic β-cell dysfunction in Diabetes.

Brain Behav Immun Health

February 2025

Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Argentina.

Pancreatic β-cells are specialized in secreting insulin in response to circulating nutrients, mainly glucose. Diabetes is one of the most prevalent endocrine-metabolic diseases characterized by an imbalance in glucose homeostasis, which result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and peripheral insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Pancreatic β-cell dysfunction and islet inflammation are common characteristics of both types of the disease.

View Article and Find Full Text PDF

Biological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!