Bioinformatics-based identification of miR-542-5p as a predictive biomarker in breast cancer therapy.

Hereditas

1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008 People's Republic of China.

Published: April 2018

Background: Tamoxifen is the first-line hormone therapy for estrogen receptor alpha positive (ERα+) breast cancer. However, about 40% of patients with ERα + breast cancer who receive tamoxifen therapy eventually develop resistance resulting in a poor prognosis. The aim of this study was to mine available data sets in the Gene Expression Omnibus (GEO) database, including in vitro (cell lines) and in vivo (tissue samples), and to identify all miRNAs associated with tamoxifen resistance (TamR) in breast cancer. Secondly, this study aimed to predict the key gene regulatory networks of newly found TamR-related miRNAs and evaluate the potential role of the miRNAs and targets as potential prognosis biomarkers for breast cancer patients.

Result: Microarray data sets from two different studies were used from the GEO database: 1. GSE66607: miRNA of MCF-7 TamR cells; 2. GSE37405: TamR tissues. Differentially expressed microRNAs (miRNAs) were identified in both data sets and 5 differentially expressed miRNAs were found to overlap between the two data sets. Profiles of GSE37405 and data from the Kaplan-Meier Plotter Database (KMPD) along with Gene Expression Profiling Interactive Analysis (GEPIA) were used to reveal the relationship between these 5 miRNAs and overall survival. The results showed that has-miR-542-5p was the only miRNA associated with overall survival of ERα + breast cancer patients who received adjuvant tamoxifen. Targets of has-miR-542-5p were predicted by miRanda and TargetScan, and the mRNA expression of the three 3 target gene, Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Beta (YWHAB), Lymphocyte Antigen 9 (LY9), and Secreted Frizzled Related Protein 1 (SFRP1) were associated with overall survival in 2 different databases. Copy-number alterations (CNAs) of SFRP1 confer survival disadvantage to breast cancer patients and alter the mRNA expression of SFRP1 in cBioPortal database.

Conclusion: This study indicates that miRNA has-miR-542-5p is associated with TamR and can predict prognosis of breast cancer patients. Furthermore, has-miR-542-5p may be acting through a mechanism involving the target genes YWHAB, LY9, and SFRP1. Overall, has-miR-542-5p is a predictive biomarker and potential target for therapy of breast cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769523PMC
http://dx.doi.org/10.1186/s41065-018-0055-7DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
data sets
16
cancer patients
16
cancer
9
predictive biomarker
8
erα + breast cancer
8
gene expression
8
geo database
8
differentially expressed
8
associated survival
8

Similar Publications

Management of nausea and vomiting induced by antibody-drug conjugates.

Breast Cancer

January 2025

Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.

Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapy that combines the specificity and long circulation half-life of monoclonal antibodies with the cytotoxic potency of the payload connected through a chemical linker. The optimal management of toxicities is crucial for improving quality of life in patients undergoing ADCs and for avoiding improper dose reductions or discontinuations. This article focuses on the characteristics and management of nausea and vomiting (NV) induced by three ADCs: trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), and datopotamab deruxtecan (Dato-DXd).

View Article and Find Full Text PDF

Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!