The scarcity of complex intermediates in pharmaceutical research motivates the pursuit of reaction optimization protocols on submilligram scales. We report here the development of an automated flow-based synthesis platform, designed from commercially available components, that integrates both rapid nanomole-scale reaction screening and micromole-scale synthesis into a single modular unit. This system was validated by exploring a diverse range of reaction variables in a Suzuki-Miyaura coupling on nanomole scale at elevated temperatures, generating liquid chromatography-mass spectrometry data points for 5760 reactions at a rate of >1500 reactions per 24 hours. Through multiple injections of the same segment, the system directly produced micromole quantities of desired material. The optimal conditions were also replicated in traditional flow and batch mode at 50- to 200-milligram scale to provide good to excellent yields.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aap9112DOI Listing

Publication Analysis

Top Keywords

nanomole-scale reaction
8
reaction screening
8
screening micromole-scale
8
micromole-scale synthesis
8
platform automated
4
automated nanomole-scale
4
reaction
4
synthesis flow
4
flow scarcity
4
scarcity complex
4

Similar Publications

The continuous development of click reactions with new connecting linkage is crucial for advancing the frontiers of click chemistry. Selenium-nitrogen exchange (SeNEx) chemistry, a versatile chemistry in click chemistry, represents an all-encompassing term for nucleophilic substitution events that replace nitrogen at an electrophilic selenium(II) center, enabling the flexible and efficient assembly of linkages around a Se(II) core. Several SeNEx chemistries have been developed inspired by the biochemical reaction between Ebselen and cysteine residue, and demonstrated significant potential in on-plate nanomole-scale parallel synthesis, selenium-containing DNA-encoded library (SeDEL) synthesis, as well as peptide and protein bioconjugation.

View Article and Find Full Text PDF

RNA methylation is a metabolic process validated for its association with various diseases, and thus, RNA methyltransferases (MTases) have become increasingly important in drug discovery. Yet, most frequently utilized RNA MTase assays are limited in their throughput and hamper this rapidly evolving field of medicinal chemistry. In this study, we describe a modular nanomole scale building block system that allowed the identification of tailored fluorescent MTase probes to unlock a broad selection of MTase drug targets for fluorescence-based binding assays.

View Article and Find Full Text PDF

Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S).

View Article and Find Full Text PDF

Rapid PROTAC Discovery Platform: Nanomole-Scale Array Synthesis and Direct Screening of Reaction Mixtures.

ACS Med Chem Lett

December 2023

Cell Culture Sciences & Banking, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden.

Precise length, shape, and linker attachment points are all integral components to designing efficacious proteolysis targeting chimeras (PROTACs). Due to the synthetic complexity of these heterobifunctional degraders and the difficulty of computational modeling to aid PROTAC design, the exploration of structure-activity relationships remains mostly empirical, which requires a significant investment of time and resources. To facilitate rapid hit finding, we developed capabilities for PROTAC parallel synthesis and purification by harnessing an array of preformed E3-ligand-linker intermediates.

View Article and Find Full Text PDF

High-throughput nanomole-scale synthesis allows for late-stage functionalization (LSF) of compounds in an efficient and economical manner. Here, we demonstrated that copper-catalyzed azide-alkyne cycloaddition could be used for the LSF of covalent kinase inhibitors at the nanoscale, enabling the synthesis of hundreds of compounds that did not require purification for biological assay screening, thus reducing experimental time drastically. We generated crude libraries of inhibitors for the kinase MKK7, derived from two different parental precursors, and analyzed them the high-throughput In-Cell Western assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!