Mouse heart development arises from -expressing cardiovascular progenitors (CPs) that are specified during gastrulation. The molecular processes that control early regional and lineage segregation of CPs have been unclear. We performed single-cell RNA sequencing of wild-type and -null CPs in mice. We showed that populations of CPs are molecularly distinct and span the continuum between epiblast and later mesodermal cells, including hematopoietic progenitors. Single-cell transcriptome analysis of -deficient CPs showed that Mesp1 is required for the exit from the pluripotent state and the induction of the cardiovascular gene expression program. We identified distinct populations of CPs that correspond to progenitors committed to different cell lineages and regions of the heart, identifying the molecular features associated with early lineage restriction and regional segregation of the heart at the early stage of mouse gastrulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556615 | PMC |
http://dx.doi.org/10.1126/science.aao4174 | DOI Listing |
Cerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel.
Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some high-copy-number components are transiently associated with almost immobile large assemblies (hyperstructures) and may be unequally distributed, contributing to bacterial phenotypic variability.
View Article and Find Full Text PDFBiol Open
January 2025
Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India.
Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA.
Background: Hybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!