Purpose: Resistance exercise training (RET) and an additional intake of dietary protein supplements may improve muscle mass and muscular function, and reduce inflammatory markers. The types, amount, and timing of dietary protein supplements are important for the synergistic effects of resistance training and dietary protein supplements. We hypothesized that a 25.1 g protein complex supplement taken for 12 weeks, immediately before and after resistance exercise, would enhance fat free mass and isokinetic muscular function in young untrained males.

Methods: Eighteen participants were randomly assigned to a placebo (n=8) or protein complex supplement groups (n=10). The RET was a supervised progressive program, 3 times per week for 12-weeks, and was performed progressing 80% of their one repetition maximum (1-RM). Body composition, blood pressure, plasma inflammatory markers, lipid level and isokinetic muscular function were assessed before and after the study period.

Results: There was a significant interaction effect in C-reactive protein (CRP) (p =0.044) among blood vessel inflammatory markers. The protein complex supplement group had shown more effective improvement at 12 weeks intervention compared to the placebo group in isokinetic muscular function. There was a significant interaction effect in peak torque at 60 degrees/sec leg extension (p =0.044), total work at 240 degrees/sec leg extension (p =0.025), and total work at 240 degrees/sec leg flexion (p =0.011).

Conclusion: Protein complex supplementation during RET appears more effective than RET alone in improving isokinetic muscular function for 12 weeks in untrained young men.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772071PMC
http://dx.doi.org/10.20463/jenb.2017.0036DOI Listing

Publication Analysis

Top Keywords

muscular function
24
protein complex
20
isokinetic muscular
20
dietary protein
12
protein supplements
12
inflammatory markers
12
complex supplement
12
degrees/sec leg
12
complex supplementation
8
weeks resistance
8

Similar Publications

In this study, the relationship between plasma ghrelin levels and muscle atrophy was examined in an experimental diabetic rat model. 56 male Wistar albino rats, aged 8-10 weeks, were used in the study. The rats were divided into 8 groupsD1: one-week diabetes, C1: one-week control, D2: three-week diabetes, C2: three-week control, D3: six-week diabetes, C3: six-week control, D4: eight-week diabetes, C4: eight-week control.

View Article and Find Full Text PDF

Poultry scientists are constantly studying different breeds of cockerels that would be suitable for capon meat production. Capon meat, although not yet very popular, is characterized by exceptional taste qualities that could appeal to many customers. Obtaining the appropriate palatability, structure and tenderness of capon meat is possible thanks to the reduction in androgen levels following the castration of roosters.

View Article and Find Full Text PDF

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas.

View Article and Find Full Text PDF

Although the connection between muscular strength and flatfoot condition is well-established, the impact of corrective exercises on these muscles remains inadequately explored. This study aimed to assess the impact of intrinsic- versus extrinsic-first corrective exercise programs on muscle morphometry and navicular drop in boys with flexible flatfoot. Twenty-five boys aged 10-12 with flexible flatfoot participated, undergoing a 12-week corrective exercise program, with a shift in focus at six weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!