Does ambient noise or hypobaric atmosphere influence olfactory and gustatory function?

PLoS One

University Hospital Halle (Saale), Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.

Published: February 2018

Multidimensional food perception is based mainly on gustatory and olfactory function. Recent research has demonstrated that hypobaric pressure impairs gustatory function and that background noise or distracting auditory stimulation impairs olfactory function. Using a hypobaric chamber, the odor identification, discrimination, and thresholds as well as taste identification and threshold scores were measured in 16 healthy male volunteers under normal and hypobaric (6380 ft) conditions using clinically validated tests. In both conditions, background noise was either canceled out or replaced by white noise presentation (70 dB sound pressure level). Olfactory sensitivity for n-butanol and gustatory sensitivity were impaired in a hypobaric atmosphere. White noise did not influence the odor test results. White noise stimulation impaired sensitivity for sour and sweet but not for bitter or salty tastants. We conclude that hypobaric or noisy environments could impair gustatory and olfactory sensitivity selectively for particular tastants and odorants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784903PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190837PLOS

Publication Analysis

Top Keywords

white noise
12
hypobaric atmosphere
8
gustatory olfactory
8
olfactory function
8
background noise
8
olfactory sensitivity
8
hypobaric
6
olfactory
5
gustatory
5
noise
5

Similar Publications

Minimum Energy Conical Intersection Optimization Using DFT/MRCI(2).

J Chem Theory Comput

January 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5,Canada.

The combined density functional theory and multireference configuration interaction (DFT/MRCI) method is a semiempirical electronic structure approach that is both computationally efficient and has predictive accuracy for the calculation of electronic excited states and for the simulation of electronic spectroscopies. However, given that the reference space is generated via a selected-CI procedure, a challenge arises in the construction of smooth potential energy surfaces. To address this issue, we treat the local discontinuities that arise as noise within the Gaussian progress regression framework and learn the surfaces by explicitly incorporating and optimizing a white-noise kernel.

View Article and Find Full Text PDF

Purpose: The purpose of this work was to evaluate the image quality of a commercial CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO).

Methods: CT number, noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF), and noise power spectrum (NPS) were assessed using the ACR CT Accreditation phantom scanned with various acquisitions at 80 kV, 100 kV, 120 kV, and 135 kV, each with multiple CTDIvol values of 20 mGy, 40 mGy, and 65 mGy. Artifacts were evaluated in an anthropomorphic head phantom, a cadaver head, and in patient studies.

View Article and Find Full Text PDF

Background: Early and continuous exposure to painful stimuli in premature infants leads to short-and long-term complications. Listening to white noise is an accessible and inexpensive non-invasive method that can be used as a safe nursing intervention in hospitals. This study aimed to assess white noise's effect on premature Infants' physiological parameters during peripheral intravenous catheter insertion.

View Article and Find Full Text PDF

The Soundtrack of a Clinic Day.

Ann Fam Med

January 2025

Clinical Skills Education Centre, Queen's University Belfast, Northern Ireland, United Kingdom.

There is a hum and drum to the clinical day, sounds and rhythms that pervade physician and patient's soundscape. We hear but we do not listen. The soundtrack of the daily grind is experienced as an audio blanket of white noise.

View Article and Find Full Text PDF

Noise-induced hearing loss (NIHL) is a common occupational condition. The aim of this study was to develop a classification model for NIHL on the basis of both functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) by applying machine learning methods. fMRI indices such as the amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree of centrality (DC), and sMRI indices such as gray matter volume (GMV), white matter volume (WMV), and cortical thickness were extracted from each brain region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!