A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy. | LitMetric

Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy.

Int J Biol Macromol

Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box. 3353-5111, Tehran 3353136846, Iran.

Published: April 2018

The major problems of porphyrins as promising materials for photodynamic therapy (PDT) are their low solubility, subsequently aggregation in biological environments, and a lack of tumor selectivity. With this in mind, a chitosan-based hydrogel conjugated with tetrakis(4-aminophenyl)porphyrin (NH-TPP) and 2,4,6-tris(p-formylphenoxy)-1,3,5-triazine (TRIPOD) via Schiff base linkage, functionalized with folate was designed and synthesized as a pH-sensitive, self-healable and injectable targeted PS delivery system. This new hydrogel was characterized by FT-IR, H NMR, SEM, UV-vis, fluorescence spectroscopy and zeta potential. Formation of imine bonds with the aldehyde group of TRIPOD and amine group of NH-TPP and chitosan, as a dynamic connection, was approved by rheological analysis. Spectroscopic characterizations revealed that aggregation of porphyrin in aqueous media was eliminated due to diminished π stacking interaction of porphyrin in 3D cross-linked hydrogel structure. Hydrogel 3D microporous structure efficiently transfers the excitation energy to the porphyrin unit, yielding improvement singlet oxygen releases. Cytotoxicity and phototoxicity analysis of the CS/NH-TPP/FA hydrogels indicating an excellent capability to kill cancer cells selectively and prevent damage to normal cells. This work presents a new and efficient model for the preparation of highly efficient and targeting photosensitizer delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.12.169DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
delivery system
8
hydrogel
5
cell-specific ph-sensitive
4
ph-sensitive nanostructure
4
nanostructure hydrogel
4
hydrogel based
4
based chitosan
4
chitosan photosensitizer
4
photosensitizer carrier
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!