Creating farms for sable breeding was associated with the commercial destruction of natural populations and, consequently, the overall decline in the species number. The gene pool of the first farm-bred sable population in Russia, established in the vicinity of Moscow (“Pushkinskiy” fur farm), was formed by crossing of animals removed from nine natural populations. In the first eight years of farm operation, approximately one thousand animals were used for sable breeding; some of these animals were able to adapt to the farm management and, subsequently, to the selection for a number of quantitative traits in the period of industrial domestication. It took about ten years for breeders to work out the breeding and selection technologies, which became successfully employed in the established affiliated sable breeding farms. The main achievement in sable breeding over the 85-year historical period of breeding in Russia is the creation of two unique breeds, black sable (1969) and Saltykovskaya 1 (2007). In general, industrial domestication in fur farming and the subsequent breeding works made the fur of many species (mink, fox, Arctic fox) obtained from natural populations uncompetitive, which undoubtedly reduced the hunting interest in the animals living in the wild. Consequently, hunting for fur-bearing animals of most species decreased and has only local importance. Owing to the specific features of sable biology, the fur of farm-bred animals cannot yet completely replace the furs obtained by hunting; however, the farm-bred sable population is constantly growing. This review presents the results of the analysis of the level of genetic variability in natural and farm populations at nuclear and mitochondrial loci. The comparative analysis makes it possible to estimate the loss of genetic diversity upon the species adaptation to the new conditions of existence.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sable breeding
16
industrial domestication
12
natural populations
12
sable
9
farm-bred sable
8
sable population
8
breeding
7
animals
6
[breeding russian
4
russian sable
4

Similar Publications

Background: Wildlife conservation and management aims to restore population declines, it is the vulnerable or endangered populations who require the greatest conservation efforts. In this context, non-invasive sampling has been evaluated as an option for reporting prey/predator impact. Galemys pyrenaicus is currently threatened throughout its range, and cohabits with Nemys anomalus, in Extremadura (Spain).

View Article and Find Full Text PDF

Mechanical positional information guides the self-organized development of a polygonal network of creases in the skin of mammalian noses.

Curr Biol

November 2024

Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, 1211 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland. Electronic address:

The glabrous skin of the rhinarium (naked nose) of many mammalian species exhibits a polygonal pattern of grooves that retain physiological fluid, thereby keeping their nose wet and, among other effects, facilitating the collection of chemosensory molecules. Here, we perform volumetric imaging of whole-mount rhinaria from sequences of embryonic and juvenile cows, dogs, and ferrets. We demonstrate that rhinarial polygonal domains are not placode-derived skin appendages but arise through a self-organized mechanical process consisting of the constrained growth and buckling of the epidermal basal layer, followed by the formation of sharp epidermal creases exactly facing an underlying network of stiff blood vessels.

View Article and Find Full Text PDF

Genomic Regions Associated with Growth and Reproduction Traits in Pink-Eyed White Mink.

Genes (Basel)

August 2024

Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China.

Article Synopsis
  • Balanced selection in mink breeding is crucial due to the conflicting nature of growth and reproductive traits like total number born (TNB), number born alive (NBA), and body weight (BW).
  • The study analyzed SNP genotypes from 219 minks using ddRAD-seq, resulting in over 2.4 million high-quality SNPs for a genome-wide association study (GWAS).
  • Findings indicate specific genes linked to TNB, NBA, and BW, providing valuable insights for enhancing mink breeding strategies.
View Article and Find Full Text PDF

The comparison of gut microbiota between wild and captive Asian badgers (Meles leucurus) under different seasons.

Sci Rep

August 2024

Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.

The gut microbiota plays an important role in the immunology, physiology and growth and development of animals. However, currently, there is a lack of available sequencing data on the gut microbiota of Asian badgers. Studying the gut microbiota of Asian badgers could provide fundamental data for enhancing productivity and immunity of badgers' breeding, as well as for the protection of wild animals.

View Article and Find Full Text PDF

Various zoonotic microorganisms cause reproductive problems such as abortions and stillbirths, leading to economic losses on farms, particularly within livestock. In South Africa, bovine brucellosis is endemic in cattle, and from 2013-2018, outbreaks of Brucella melitensis occurred in sable. Coxiella burnetii, the agent responsible for the zoonotic disease known as Q-fever and/or coxiellosis, also causes reproductive problems and infects multiple domestic animal species worldwide, including humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!