Cabazitaxel inhibits proliferation and potentiates the radiation response of U87MG glioblastoma cells.

Cell Biol Int

Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.

Published: July 2018

Cabazitaxel is a second-generation semisynthetic taxane. The recognized anti-neoplastic effect of Cabazitaxel is cell cycle perturbation by inducing arrest at G2/M. Since glioblastoma tumors have a relatively high expression of P-gp, it is encouraging to find a treatment that is effective against these tumors. This study was conducted to examine the radiosensitizing potential of Cabazitaxel against U87MG cells. In order to evaluate the effect of Cabazitaxel, cells were treated with different concentrations of the drug at different time intervals and then cytotoxicity and cell cycle were assessed using MTT and flow cytometry assays, respectively. Annexin/PI and real-time polymerase chain reaction (PCR) assays were used to evaluate the extent of apoptosis. Cabazitaxel exerted a consistent G2/M arrest and resulted in a concentration- and time-dependent toxicity. Cabazitaxel enhanced the cytotoxicity response of U87MG cells to radiation. Apoptosis increased following Cabazitaxel-IR administration. At the same time, these results were further supported by apoptotic genes regulation. This study provides the first preclinical evidence supporting that Cabazitaxel can render U87MG cells more susceptible to the cytotoxicity of radiation and could potentially be administered in combination modalities as a promising cell cycle-specific radiosensitizer for the future steps of in vivo evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.10940DOI Listing

Publication Analysis

Top Keywords

u87mg cells
12
cabazitaxel
8
response u87mg
8
cell cycle
8
cells
5
cabazitaxel inhibits
4
inhibits proliferation
4
proliferation potentiates
4
potentiates radiation
4
radiation response
4

Similar Publications

Adiponectin (ADN) regulates DNA synthesis, cell apoptosis and cell cycle to participate in the pathology and progression of glioblastoma. The present study aimed to further explore the effect of ADN on temozolomide (TMZ) resistance in glioblastoma and the underlying mechanism of action. Glioblastoma cell lines (U251 and U87-MG cells) were treated with ADN and TMZ at different concentrations; subsequently, 3.

View Article and Find Full Text PDF

Glioblastoma is considered the most malignant central nervous system tumor. This study aimed to investigate effects of latent transforming growth factor-β binding protein-2 (LTBP2) on glioblastoma growth and associated mechanisms. LTBP2 gene transcription in glioblastoma was determined using RT-PCR.

View Article and Find Full Text PDF

Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a new cancer treatment system called Chit-IOCO-MTX-Cy5, which combines chitosan nanocomposites with cerium oxide and iron oxide nanoparticles, along with methotrexate and a dye for imaging.
  • The system acts as both an anti-cancer agent and enhances MRI imaging, showing high effectiveness with better results than currently approved imaging agents.
  • It significantly reduces tumor growth with no regrowth after treatment, while showing good safety in mice, indicating its potential as an effective cancer theranostic tool.
View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is an aggressive brain tumor that primarily affects adults. The Stupp Protocol, which includes surgical resection, chemoradiation, and monotherapy with temozolomide (TMZ), is the standard treatment regimen for GBM. However, repeated use of TMZ leads to resistance in GBM cells, resulting in a poor prognosis for patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!