Roles of Amphipathicity and Hydrophobicity in the Micelle-Driven Structural Switch of a 14-mer Peptide Core from a Choline-Binding Repeat.

Chemistry

Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain.

Published: April 2018

AI Article Synopsis

  • Choline-binding repeats (CBRs) are common sequences in the surface proteins of various microorganisms, with a specific focus on a 14-mer sequence from S. pneumoniae's LytA autolysin.
  • Previous research shows that this peptide can switch between a stable β-hairpin form in water and an amphipathic α-helix when detergent micelles are present.
  • The study investigates factors affecting this transition, especially the roles of hydrophobicity and amphipathicity, revealing that strong cross-strand interactions are key for β-hairpin stability and that both properties are equally important for stabilizing the α-helix in micelles.

Article Abstract

Choline-binding repeats (CBRs) are ubiquitous sequences with a β-hairpin core that are found in the surface proteins of several microorganisms such as S. pneumoniae (pneumococcus). Previous studies on a 14-mer CBR sequence derived from the pneumoccal LytA autolysin (LytA peptide) have demonstrated a switch behaviour for this peptide, so that it acquires a stable, native-like β-hairpin conformation in aqueous solution but is reversibly transformed into an amphipathic α-helix in the presence of detergent micelles. With the aim of understanding the factors responsible for this unusual β-hairpin to α-helix transition, and to specifically assess the role of peptide hydrophobicity and helical amphipathicity in the process, we designed a series of LytA variants affecting these two parameters and studied their interaction with dodecylphosphocholine (DPC) micelles by solution NMR, circular dichroism and fluorescence spectroscopies. Our results indicate that stabilising cross-strand interactions become essential for β-hairpin stability in the absence of optimal turn sequences. Moreover, both amphipathicity and hydrophobicity display comparable importance for helix stabilisation of CBR-derived peptides in micelles, indicating that these sequences represent a novel class of micelle/membrane-interacting peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201704802DOI Listing

Publication Analysis

Top Keywords

amphipathicity hydrophobicity
8
roles amphipathicity
4
hydrophobicity micelle-driven
4
micelle-driven structural
4
structural switch
4
switch 14-mer
4
peptide
4
14-mer peptide
4
peptide core
4
core choline-binding
4

Similar Publications

Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .

Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.

View Article and Find Full Text PDF

Natural terpenes II. Concentration-dependent profile of effects on dynamic organization of biological and model membranes.

Biochem Biophys Res Commun

January 2025

Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina. Electronic address:

Monoterpenes (MTs), the major constituents of plant essential oils, cover a broad spectrum of biological activities through their interaction with biomembranes. MTs are highly hydrophobic substances with a net electrical dipole, but are not clearly amphipathic. As a result, they aggregate at increasing concentrations in aqueous media, and in membrane environments their behavior changes from dynamics modulators to disruptors.

View Article and Find Full Text PDF

Magnesium-Phenolic Nanoeditor Refining Gliomatous T Cells for Metalloimmunotherapy.

ACS Nano

December 2024

Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.

More than the sparse infiltration in glioblastoma, cytotoxic T lymphocytes (CTLs) also function inefficiently and overexpress the inhibitory markers, especially the identified NK cell receptor (NK1.1). However, most studies solely focus on how to augment tumor-infiltrating CTLs and overlook their killing maintenance.

View Article and Find Full Text PDF

Asymmetrically PEGylated and amphipathic heptamethine indocyanine dyes potentiate radiotherapy of renal cell carcinoma via mitochondrial targeting.

J Nanobiotechnology

December 2024

Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.

Enhancing the sensitivity of radiotherapy (RT) towards renal cell carcinoma (RCC) remains a challenge because RCC is a radioresistant tumor. In this work, we design and report asymmetrically Polyethylene Glycol (PEG)ylated and amphipathic heptamethine indocyanine dyes for efficient radiosensitization of RCC treatment. They were synthesized by modifying different lengths of PEG chains as hydrophilic moieties on one N-alkyl chain of a mitochondria-targeting heptamethine indocyanine dye (IR-808), and a radiosensitizer 2-nitroimidazole (NM) as a hydrophobic moiety on another N-alkyl chain.

View Article and Find Full Text PDF

Introduction: Ulcerative colitis (UC) is a chronic intestinal disease characterized by spleen-lung qi deficiency and dampness-pathogenic obstruction. Although there are various treatment options available, patients frequently encounter significant drug-related side effects. Previous studies have shown the potential of A (CPA) in treating UC, but their limited bioavailability has restricted their clinical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!