Graphene has been broadcasted as a promising choice of electrode and substrate for flexible electronics. To be truly useful in this regime, graphene has to prove its capability in ordering the growth of overlayers at an atomic scale, commonly known as epitaxy. Meanwhile, graphene as a diffusion barrier against atoms and ions has been shown in some metal-graphene-dielectric configurations for integrated circuits. Guided by these two points, this work explores a new direction of using graphene as a bifunctional material in an electrochemical metallization memory, where graphene is shown to (i) order the growth of a low-ionicity semiconductor ZnS single-crystalline film and (ii) regulate the ion migration in the resistive switching device made of Cu/ZnS/graphene/Cu structures. The ZnS film is confirmed to be van der Waals epitaxially grown on single-crystal graphene with X-ray structural analysis and Raman spectroscopy. Charge transport studies with controlled kinetic parameters reveal superior ion regulating characteristic of graphene in this ZnS-based resistive switching device. The demonstration of the first graphene-directed epitaxial wide band gap semiconductor resistive switching suggests a possible and promising route toward flexible memristors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b18385 | DOI Listing |
Sci Total Environ
January 2025
Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China. Electronic address:
Streptococcus suis (S. suis) is a neglected and emerging pathogen that leads to severe economic losses in swine industry. Despite its epidemic potential, the zoonotic threat posed by S.
View Article and Find Full Text PDFNat Chem Biol
January 2025
MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
Chemical reprogramming enables the generation of human pluripotent stem (hCiPS) cells from somatic cells using small molecules, providing a promising strategy for regenerative medicine. However, the current method is time consuming, and some cell lines from different donors are resistant to chemical induction, limiting the utility of this approach. Here, we developed a fast reprogramming system capable of generating hCiPS cells in as few as 10 days.
View Article and Find Full Text PDFClin Ophthalmol
December 2024
University Eye Hospital, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
Purpose: To evaluate visual and anatomical outcome of consecutive patients who received intravitreal injections (IVI) of faricimab for the treatment of neovascular age-related macular degeneration (nAMD).
Patients And Methods: A retrospective study of patients treated for nAMD with one to three IVIs of faricimab from October 2022 to January 2024. Demographic data, treatment history, best corrected visual acuity (BCVA), anatomic parameters, and adverse events (AEs) were collected.
Nat Commun
January 2025
Key Laboratory of Brain like Neuromorphic Devices and Systems of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding, Hebei, China.
Neuromorphic computing holds immense promise for developing highly efficient computational approaches. Memristor-based artificial neurons, known for due to their straightforward structure, high energy efficiency, and superior scalability, which enable them to successfully mimic biological neurons with electrical devices. However, the reliability of memristors has always been a major obstacle in neuromorphic computing.
View Article and Find Full Text PDFCancer Sci
January 2025
Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!