Purpose: To evaluate the viability and biocompatibility of a novel, patented bioadhesive system for intrarenal embedding and retrieval of residual fragments after endoscopic lithotripsy. Complete stone clearance via active removal of residual fragments (RF) after intracorporeal laser lithotripsy may be time-consuming and fail in many cases. Therefore, the novel adhesive has been developed and evaluated for the first time in an in vivo pig model in the present work.

Methods: Four female domestic pigs underwent flexible ureteroscopy (RIRS) or percutaneous nephrolithotomy (PNL) under general anesthesia (8 kidneys, 4 × RIRS, 4 × PNL) evaluating the bioadhesive system.

Interventions: RIRS without adhesive system (sham procedure, kidney I); 3 × RIRS using the bioadhesive system (kidneys II-IV); and 4 × PNL using the bioadhesive system (V-VIII). We endoscopically inserted standardized human stone probes followed by comminution using Ho:YAG lithotripsy. The bioadhesive (kidney II-VIII) was then applied and the adhesive-stone fragment complex extracted. After nephrectomy, all kidneys were evaluated by two independent, blinded pathologists. Endpoints were the procedure's safety and adhesive system's biocompatibility.

Results: We observed no substantial toxic effects. We were able to embed and remove 80-90% of fragments. However, because of the pig's hampering pyelocaliceal anatomy, a quantified, proportional assessment of the embedded fragments was compromised.

Conclusions: For the first time, we demonstrated the proven feasibility and safety of this novel bioadhesive system for embedding and endoscopically removing small RF in conjunction with a lack of organ toxicity in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00345-018-2188-8DOI Listing

Publication Analysis

Top Keywords

bioadhesive system
16
residual fragments
12
viability biocompatibility
8
adhesive system
8
system intrarenal
8
intrarenal embedding
8
vivo pig
8
pig model
8
system
6
bioadhesive
6

Similar Publications

Mussel byssi form a robust underwater adhesive system, anchoring to various surfaces in harsh marine environments. Central to byssus is foot protein type 4 (fp-4), a junction protein connecting collagenous threads to proteinaceous plaque. This study investigated an anionic plaque-binding domain of fp-4 (fp-4a) and its interactions with cationic foot proteins (fp-1, fp-5, and fp-151 as model substitutes for fp-2) and metal ions (Ca, Fe, and V).

View Article and Find Full Text PDF

Gelatin-DOPA-knob/fibrinogen hydrogel inspired by fibrin polymerization and mussel adhesion for rapid and robust hemostatic sealing.

Biomaterials

December 2024

Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China. Electronic address:

Tissue adhesives have attracted significant interest in the field of hemostasis. However, challenges including weak tissue adhesion, inadequate biocompatibility, and instability limit their clinical applications. Here, we have developed a gelatin-DOPA-knob/fibrinogen hydrogel inspired by the fibrin polymerization and mussel adhesion, resulting in a biocompatible bioadhesive with outstanding adhesion performance and great storage stability.

View Article and Find Full Text PDF

Background And Purpose: The study explores basil seed mucilage as a bioadhesive carrier for naproxen sodium, demonstrating its ability to enhance solubility when administered rectally. The mucilage, derived from seeds, showed bioadhesive properties and thermal stability, as confirmed by FTIR spectroscopy and X-ray diffraction analysis.

Experimental Approach: Microspheres were prepared using a double emulsion solvent evaporation technique, varying polymer ratios to optimize drug delivery.

View Article and Find Full Text PDF

Itraconazole (ITZ) is a highly effective antifungal agent. However, its oral application is associated with systemic toxicity and poor topical use. The present study aims to improve the antifungal activity of ITZ by loading it into bioadhesive niosomes.

View Article and Find Full Text PDF

Advancing cellular transfer printing: achieving bioadhesion-free deposition vibration microstreaming.

Lab Chip

December 2024

Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.

Article Synopsis
  • Cell transfer printing is important in biomedical research, but traditional methods have limitations like needing complex surface changes and poor control over cell quantity.
  • A new method using vibration-induced microstreaming allows for adhesion-free, non-labeling, and high-throughput cell transfer, enabling the transfer of single cells and precise control over their arrangement.
  • This innovative technique shows great potential for improving cell manipulation in research and diagnostics due to its biocompatibility, efficiency, and ability to fine-tune cell transfer amounts and patterns.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!