For future manned long-d uration space missions, the supply of essentials, such as food, water, and oxygen with the least possible material resupply from Earth is vital. This need could be satisfied utilizing aquatic bioregenerative life support systems (BLSS), as they facilitate recycling and autochthonous production. However, few organisms can cope with the instable environmental conditions and organic pollution potentially prevailing in such BLSS. Ostracoda, however, occur in eu- and even hypertrophic waters, tolerate organic and chemical waste, varying temperatures, salinity, and pH ranges. Thus, according to their natural role, they can link oxygen liberating, autotrophic algae, and higher trophic levels (e.g., fish) probably also in such harsh BLSS. Yet, little is known about how microgravity (µ) affects Ostracoda. In this regard, we investigated locomotion and orientation, as they are involved in locating mating partners and suitable microhabitats, foraging, and escaping predators. Our study shows that Ostracoda exhibit altered activity patterns and locomotion behavior (looping) in µ. The alterations are differentially marked between the studied species (i.e., 2% looping in , ~50% in ) and also the thresholds of gravity perception are distinct, although the reasons for these differences remain speculative. Furthermore, neither species acclimates to µ nor orientates by light in µ. However, Ostracoda are still promising candidates for BLSS due to the low looping rate of and our findings that the so far analyzed vital functions and life-history parameters of remained similar as under normal gravity conditions despite of its high looping rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773599 | PMC |
http://dx.doi.org/10.1038/s41526-017-0037-5 | DOI Listing |
Biological activities observed in living systems occur as the output of which nanometer-, submicrometer-, and micrometer-sized structures and tissues non-linearly and dynamically behave through chemical reaction networks, including the generation of various molecules and their assembly and disassembly. To understand the essence of the dynamic behavior in living systems, simpler artificial objects that exhibit cell-like non-linear phenomena have been recently constructed. However, most objects exhibiting cell-like dynamics have been found through trial-and-error experiments, and there are no strategies for designing them as molecular systems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain.
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA 94305.
Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Nantes Université, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, Nantes F-44000, France.
Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media.
View Article and Find Full Text PDFNat Commun
January 2025
Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France.
To ensure their survival, animals must be able to respond adaptively to threats within their environment. However, the precise neural circuit mechanisms that underlie flexible defensive behaviors remain poorly understood. Using neuronal manipulations, machine learning-based behavioral detection, electron microscopy (EM) connectomics and calcium imaging in Drosophila larvae, we map second-order interneurons that are differentially involved in the competition between defensive actions in response to competing aversive cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!