For many years, silicon micro-strip detectors have been successfully used as tracking detectors for particle and nuclear physics experiments. A new application of this technology is to the field of particle therapy, where radiotherapy is carried out by use of charged particles such as protons or carbon ions. Such a treatment has been shown to have advantages over standard x-ray radiotherapy and as a result of this, many new centres offering particle therapy are currently under construction - including two in the U.K.. The characteristics of a new silicon micro-strip detector based system for this application will be presented. The array uses specifically designed large area sensors in several stations in an -- co-ordinate configuration suitable for very fast proton tracking with minimal ambiguities. The sensors will form a tracker capable of giving information on the path of high energy protons entering and exiting a patient. This will allow proton computed tomography (CT) to aid the accurate delivery of treatment dose with tuned beam profile and energy. The tracker will also be capable of proton counting and position measurement at the higher fluences and full range of energies used during treatment allowing monitoring of the beam profile and total dose. Results and initial characterisation of sensors will be presented along with details of the proposed readout electronics. Radiation tests and studies with different electronics at the Clatterbridge Cancer Centre and the higher energy proton therapy facility of iThemba LABS in South Africa will also be shown.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777586 | PMC |
http://dx.doi.org/10.1088/1748-0221/10/02/C02015 | DOI Listing |
Sci Rep
January 2025
High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan.
Neutron imaging is a nondestructive and noninvasive inspection technique with a wide range of potential applications. However, the fundamentals of this technique still need to be improved, one of which involves achieving micrometer scale or even better resolution, which is a challenging task. Recently, a high-resolution neutron imaging device based on fine-grained nuclear emulsions was developed.
View Article and Find Full Text PDFBackground: In proton radiotherapy, the steep dose deposition profile near the end of the proton's track, the Bragg peak, ensures a more conformed deposition of dose to the tumor region when compared with conventional radiotherapy while reducing the probability of normal tissue complications. However, uncertainties, as in the proton range, patient geometry, and positioning pose challenges to the precise and secure delivery of the treatment plan (TP). In vivo range determination and dose distribution are pivotal for mitigation of uncertainties, opening the possibility to reduce uncertainty margins and for adaptation of the TP.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China.
Magnetic resonance imaging (MRI) is a cornerstone technology in clinical diagnostics and in vivo research, offering unparalleled visualization capabilities. Despite significant advancements in the past century, traditional H MRI still faces sensitivity limitations that hinder its further development. To overcome this challenge, hyperpolarization methods have been introduced, disrupting the thermal equilibrium of nuclear spins and leading to an increased proportion of hyperpolarized spins, thereby enhancing sensitivity by hundreds to tens of thousands of times.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
January 2025
Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, 171 76, Sweden.
Background: Beyond the use of conventional short-lived PET radionuclides, there is a growing interest in tracking larger biomolecules and exploring radiotheranostic applications. One promising option for imaging medium-sized molecules and peptides is ⁵⁵Co (T₁/₂ = 17.5 h, β⁺ = 76%), which enables imaging of new and already established tracers with blood circulation of several hours.
View Article and Find Full Text PDFPhys Med
January 2025
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences, Cyclotron Centre Bronowice, Krakow, Poland.
Purpose: With the increasing use of proton therapy, there is a growing emphasis on including radiation quality, often quantified by linear energy transfer, as a treatment plan optimization factor. The Timepix detectors offer energy-sensitive particle tracking useful for the characterization of proton linear energy transfer. To improve the detector's performance in mixed radiation fields produced in proton therapy, we customized the detector settings and performed the per-pixel energy calibration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!