Gypsy moth ( L., Lymantriinae) is a major pest of pedunculate oak () forests in Europe, but how its infections scale with foliage physiological characteristics, in particular with photosynthesis rates and emissions of volatile organic compounds has not been studied. Differently from the majority of insect herbivores, large larvae of rapidly consume leaf area, and can also bite through tough tissues, including secondary and primary leaf veins. Given the rapid and devastating feeding responses, we hypothesized that infection of leaves by leads to disproportionate scaling of leaf photosynthesis and constitutive isoprene emissions with damaged leaf area, and to less prominent enhancements of induced volatile release. Leaves with 0% (control) to 50% of leaf area removed by larvae were studied. Across this range of infection severity, all physiological characteristics were quantitatively correlated with the degree of damage, but all these traits changed disproportionately with the degree of damage. The net assimilation rate was reduced by almost 10-fold and constitutive isoprene emissions by more than 7-fold, whereas the emissions of green leaf volatiles, monoterpenes, methyl salicylate and the homoterpene (3)-4,8-dimethy-1,3,7-nonatriene scaled negatively and almost linearly with net assimilation rate through damage treatments. This study demonstrates that feeding by large insect herbivores disproportionately alters photosynthetic rate and constitutive isoprene emissions. Furthermore, the leaves have a surprisingly large capacity for enhancement of induced emissions even when foliage photosynthetic function is severely impaired.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777602 | PMC |
http://dx.doi.org/10.1016/j.envexpbot.2017.03.014 | DOI Listing |
Int J Mol Sci
December 2024
Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China.
Oliv. typically has four kinds of heteromorphic leaves: linear (Li), lanceolate (La), ovate (Ov) and broad ovate (Bo). Heteromorphic leaves help adapt to extreme desert environments and further contribute to protection against land desertification in Northwest China.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Studying climate change's impact on vegetation canopy growth and senescence is significant for understanding and predicting vegetation dynamics. However, there is a lack of adequate research on canopy changes across the lifecycles of different vegetation types. Using GLASS LAI (leaf area index) data (2001-2020), we investigated canopy development (April-June), maturity (July-August), and senescence (September-October) rates in Northeast China, focusing on their responses to preseason climatic factors.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Integrated Crop Production Research Unit, Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco.
(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Jiyang College, Zhejiang A&F University, Zhuji 311800, China.
(), a significant ornamental plant species, is adversely affected by the severe soil heavy metal pollution resulting from rapid industrialization, particularly in terms of its growth environment. Cadmium (Cd), a representative heavy metal pollutant, poses a significant threat to plant growth and photosynthetic physiology. Despite the importance of understanding Cd stress resistance in rhododendrons, research in this area is limited.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China.
Total leaf area per shoot () can reflect the photosynthetic capacity of a shoot. A prior study hypothesized that is proportional to the product of the sum of the individual leaf widths per shoot () and the maximum individual leaf length per shoot (), referred to as the Montgomery-Koyama-Smith equation (MKSE). However, empirical evidence does not support such a proportional relationship hypothesis, as was found to allometrically scale with , i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!