Isolation, identification and characterization of novel Bacillus subtilis.

J Vet Med Sci

College of Animal Science, Anhui Sciences and Technology University, Fengyang, Anhui 233100, China.

Published: March 2018

In this study, we have identified a bacterium that can inhibit the growth of Staphylococcus aureus, and further analyzed its antibacterial activity and other biological characteristics and laid the foundation for its future application. Through isolation and culture of the unknown bacteria, the culture characteristics, morphology observation, biochemical test, preliminary antibacterial test, 16S rRNA PCR amplification, sequence analysis, and homology analysis were performed. It was found that the bacteria are Gram positive spore chain Bacillus. The bacteria could only ferment glucose for acid production, but could not utilize lactose and maltose. The VP test for this bacteria was positive, while indole and methyl red tests were negative. Further analysis showed that these bacteria shared a homology up to 99.4% with Bacillus subtilis DQ198162.1. Thus, this newly identified bacterium was classified as Bacillus subtilis. Importantly, the crude bacteriocin of this Bacillus subtilis could inhibit the growth of Staphylococcus aureus, Escherichia coli, Enterococcus and Salmonella, which implies its potential usage in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880821PMC
http://dx.doi.org/10.1292/jvms.16-0572DOI Listing

Publication Analysis

Top Keywords

bacillus subtilis
16
identified bacterium
8
inhibit growth
8
growth staphylococcus
8
staphylococcus aureus
8
bacillus
5
bacteria
5
isolation identification
4
identification characterization
4
characterization novel
4

Similar Publications

A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.

Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.

View Article and Find Full Text PDF

Engineered Phage Enables Efficient Control of Gene Expression upon Infection of the Host Cell.

Int J Mol Sci

December 2024

CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Recently, we developed a spatial phage-assisted continuous evolution (SPACE) system. This system utilizes chemotaxis coupled with the growth of motile bacteria during their spatial range expansion in soft agar to provide fresh host cells for iterative phage infection and selection pressure for preserving evolved genes of interest carried by phage mutants. Controllable mutagenesis activated only in a subpopulation of the migrating cells is essential in this system to efficiently generate mutated progeny phages from which desired individuals are selected during the directed evolution process.

View Article and Find Full Text PDF

species are used as herbal medicine and in the preparation of decoctions in several Asian and African regions. Among them, the plant is known for its medicinal properties, but comprehensive studies on its biological activity are still limited. This study examined the properties of the essential oil (EO) extracted by and collected in Morocco during the flowering period.

View Article and Find Full Text PDF

Laccases that oxidize low-density polyethylene (LDPE) represent a promising strategy for bioremediation purposes. To rationalize or optimize their PE-oxidative activity, two fundamental factors must be considered: the enzyme's redox potential and its binding affinity/mode towards LDPE. Indeed, a stable laccase-PE complex may facilitate a thermodynamically unfavorable electron transfer, even without redox mediators.

View Article and Find Full Text PDF

D-Allose, a rare sugar, has gained significant attention not only as a low-calorie sweetener but also for its anticancer, antitumor, anti-inflammatory, antioxidant, and other pharmaceutical properties. Despite its potential, achieving high-level biosynthesis of D-allose remains challenging due to inefficient biocatalysts, low conversion rates, and the high cost of substrates. Here, we explored the food-grade coexpression of D-allulose 3-epimerase (Bp-DAE) and L-rhamnose isomerase (BsL-RI) within a single cell using WB800N as the host.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!