Primary resistance to androgen receptor (AR)-directed therapies in metastatic castration-resistant prostate cancer (mCRPC) is poorly understood. We randomized 202 patients with treatment-naïve mCRPC to abiraterone or enzalutamide and performed whole-exome and deep targeted 72-gene sequencing of plasma cell-free DNA prior to therapy. For these agents, which have never been directly compared, time to progression was similar. Defects in and were strongly associated with poor clinical outcomes independently of clinical prognostic factors and circulating tumor DNA abundance. Somatic alterations in , previously linked to reduced tumor dependency on AR signaling, were also independently associated with rapid resistance. Although detection of amplifications did not outperform standard prognostic biomarkers, gene structural rearrangements truncating the ligand binding domain were identified in several patients with primary resistance. These findings establish genomic drivers of resistance to first-line AR-directed therapy in mCRPC and identify potential minimally invasive biomarkers. Leveraging plasma specimens collected in a large randomized phase II trial, we report the relative impact of common circulating tumor DNA alterations on patient response to the most widely used therapies for advanced prostate cancer. Our findings suggest that liquid biopsy analysis can guide the use of AR-targeted therapy in general practice. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/2159-8290.CD-17-0937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!